PSOL v12

Distributed Tuning Interface Guide

Developing Applications Using the Distributed Tuning Interface

Qlelilal)!

disclaimer

trademarks

ACTIAN CORPORATION LICENSES THE SOFTWARE AND DOCUMENTATION
PRODUCT TO YOU OR YOUR COMPANY SOLELY ON AN “AS IS” BASIS AND SOLELY IN
ACCORDANCE WITH THE TERMS AND CONDITIONS OF THE ACCOMPANYING
LICENSE AGREEMENT. ACTIAN CORPORATION MAKES NO OTHER WARRANTIES
WHATSOEVER, EITHER EXPRESS OR IMPLIED, REGARDING THE SOFTWARE OR THE
CONTENT OF THE DOCUMENTATION; ACTIAN CORPORATION HEREBY EXPRESSLY
STATES AND YOU OR YOUR COMPANY ACKNOWLEDGES THAT ACTIAN
CORPORATION DOES NOT MAKE ANY WARRANTIES, INCLUDING, FOR EXAMPLE,
WITH RESPECT TO MERCHANTABILITY, TITLE, OR FITNESS FOR ANY PARTICULAR
PURPOSE OR ARISING FROM COURSE OF DEALING OR USAGE OF TRADE, AMONG
OTHERS.

Btrieve, Client/Server in a Box, and Pervasive are registered trademarks of Actian Corporation.
Built on Pervasive Software, DataExchange, MicroKernel Database Engine, MicroKernel Database
Architecture, Pervasive.SQL, Pervasive PSQL, Solution Network, Ultralight, and ZDBA are trademarks of
Actian Corporation.

Apple, Macintosh, Mac, and OS X are registered trademarks of Apple Inc.

Microsoft, MS-DOS, Windows, Windows 95, Windows 98, Windows NT, Windows Millennium, Windows
2000, Windows 2003, Windows 2008, Windows 7, Windows 8, Windows 10, Windows Server 2003,
Windows Server 2008, Windows Server 2012, Windows XP, Win32, Win32s, and Visual Basic are registered
trademarks of Microsoft Corporation.

NetWare and Novell are registered trademarks of Novell, Inc. NetWare Loadable Module, NLM, Novell
DOS, Transaction Tracking System, and TTS are trademarks of Novell, Inc.

Oracle, Java, all trademarks and logos that contain Oracle, or Java, are trademarks or registered trademarks
of Oracle Corporation.

All other company and product names are the trademarks or registered trademarks of their respective
companies.

© Copyright 2016 Actian Corporation. All rights reserved. Reproduction, photocopying, or transmittal of
this publication, or portions of this publication, is prohibited without the express prior written consent of
the publisher.

This product includes software developed by Powerdog Industries. © Copyright 1994 Powerdog Industries.
All rights reserved. This product includes software developed by KeyWorks Software. © Copyright 2002
KeyWorks Software. All rights reserved. This product includes software developed by DUNDAS
SOFTWARE. © Copyright 1997-2000 DUNDAS SOFTWARE LTD., all rights reserved. This product
includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product uses the free unixODBC Driver Manager as written by Peter Harvey
(pharvey@codebydesign.com), modified and extended by Nick Gorham (nick@easysoft.com), with local
modifications from Actian Corporation. Actian Corporation will donate their code changes to the current
maintainer of the unixODBC Driver Manager project, in accordance with the LGPL license agreement of
this project. The unixODBC Driver Danager home page is located at www.unixodbc.org. For further
information on this project, contact its current maintainer: Nick Gorham (nick@easysoft.com).

A copy of the GNU Lesser General Public License (LGPL) is included on the distribution media for this
product. You may also view the LGPL at www.fsf.org/licensing/licenses/Igpl.html.

Distributed Tuning Interface Guide
June 2016

Contents

About ThisManual XVii
Who Should Read This Manual. Xviii
Conventions XixX

1 Distributed Tuning Interface Guide 1
Overview of Distributed Tuning Interface 2

String Arguments Encoding 2
APLCategories. o o 2
Execution Privileges. 2
Basics Of Using DT o 3
Header Files o 3
Link Libraries o 3
Before Calling Any Functions 3
Sample Programs For DTL. 4
Common Tasks With DTL. e 5
Making a Connection to a Server Using DTI 5
Obtaininga Setting IDUsing DTI 5
Passinga DTI Structureasa Parameter 6

2 Distributed Tuning Interface Reference. 7
Using the DTI Function Reference 8
DTIFunctional Groups o 9
DTIEIrOr MESSageS . . . v v v v e e e e e e e e e e e e e e e 12
DTIStrUCtUrES o 13

CONFIG.H Structures e e e e 13
DDFSTRCT.H Structures. e e e e 13
MONITOR.H SIFUCTUIES o e e e e e 15
DTICalling SEqUENCE o o e e e e 17
DTl Function Definitions e 18
PvAddIndex() 19
SYNtaX. . . . e 19
AFQUMENTS o e 19
ReturnValues 19
Remarks 19
SEE AISO. . . L 19
PvAddLicense() 21
SYNEAX. . . . e 21
AFQUMENTS o 21
Return Values 21
Remarks 21
Example 21
SEE AlSO. . . 21
PvAddTable() 23
SYNTAX. . . . e 23
AFQUMENTS o e 23
Return Values 23
Remarks 24
SEE AlSO. . . 24
PVAddUSerToGroup() v v e e 25

Contents

SYNIAX. . . . e e 25
AFQUMENTS o 25
ReturnValues e e 25
Remarks e 25
See AlSO. . . . e 26
PvAlterUserName() 27
SYNIAX. . . . e e 27
AFQUMENTS o o e 27
ReturnValues e e 27
Remarks e 27
See AlSO. . . . e 28
PvAlterUserPassword() 29
SYNIAX. . . . e 29
AFQUMENTS . . . o o 29
ReturnValues e e 29
Remarks e 29
See AlSO. . . . e 29
PvCheckDbInfo() 31
SYNIAX. . . . e e 31
AFQUMENTS o 31
ReturnValues e 31
Remarks e 31
EXample e 31
See AlSO. . . . e 32
PvCloseDatabase() o 33
SYNIAX. . . . e e 33
AFQUMENTS . . . o o e 33
ReturnValues e 33
Remarks e e 33
See AlSO. . . . e 33
PvCloseDictionary() o 34
SYNIAX. . . . e e 34
AFQUMENTS o 34
ReturnValues e 34
Remarks e 34
EXample e 34
See AlSO. . . . e 34
PvConnectServer() 35
SYNIAX. . . . e e 35
AFQUMENTS o e 35
ReturnValues e 35
Remarks e 36
EXample 36
See AlSO. . . . e 36
PvCopyDatabase() 37
SYNIAX. . . . e 37
AFQUMENTS . . . o o e 37
ReturnValues e e 37
Remarks e e 38
EXample e 38
See AlSO. . . . e 38
PvCountDSNS() o e 39
SYNIAX. . . . e 39
AFQUMENTS o 39

ReturnValues
Remarks
SEE AlSO. . . . o

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
Example
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS L
ReturnValues e
Remarks e
See AlSO. . . . L e

Contents

Vi

AFQUMENTS . . . o o
ReturnValues e
Remarks e e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
EXample e
See AlSO. . . . L e

AFQUMENTS . . . o o
ReturnValues e
EXample e
See AlSO. . . . L e

AQUMENTS o e
ReturnValues e
EXample
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
EXample e
Remarks e
See AlSO. . . . L e

AFQUMENTS . . . o o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o e
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues o
Remarks

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
Example
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
Example
See AlSO. . . . L e

vii

Contents

ReturnValues e 83
Remarks e 83
See AlSO. . . . L e 83
PvGetBooleanStrings() 85
SYNEAX. . . . e e 85
AFQUMENTS o o 85
ReturnValues e 85
Remarks e 85
See AlSO. . . . L e 86
PvGetBooleanValue() e 87
SYNIAX. . . . e e 87
AFQUMENTS o 87
ReturnValues e 87
Remarks e 87
See AlSO. . . . L e 87
PvGetCategorylnfo() 89
SYNIAX. . . . e e 89
AFQUMENTS o e 89
ReturnValues e 89
Remarks e 89
See AlSO. . . . L e 89
PvGetCategoryList() 90
SYNIAX. . . . e e 90
AQUMENTS o 90
ReturnValues e 90
Remarks e 90
See AlSO. . . . L e 90
PvGetCategoryListCount() 91
SYNIAX. . . . e e 91
AQUMENTS o 91
ReturnValues e 91
Remarks e 91
See AlSO. . . . L e 91
PvGetDbCodePage() 92
SYNIAX. . . . e e 92
AFQUMENTS o 92
ReturnValues e 92
Remarks e 92
See AlSO. . . . L e 92
PvGetDbDataPath() 94
SYNIAX. . . . e e 94
AFQUMENTS o 94
ReturnValues e 94
See AlSO. . . . L e 95
PvGetDbDictionaryPath() 96
SYNIAX. . . . e e 96
AFQUMENTS . . . o o 96
ReturnValues e 96
Remarks e 96
See AlSO. . . . L e 97
PvGetDbFlags() 98
SYNIAX. . . . e e 98
AFQUMENTS . . . o o 98
ReturnValues e 98

viii

ArQUMENTS o
ReturnValues e
Example
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e e
See AlSO. . . . L e

ArQUMENTS L
ReturnValues e
Remarks e e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS L
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

Contents

ReturnValues
Remarks
SEE AlSO. . . . e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AQUMENTS o
ReturnValues e
Remarks e e
See AlSO. . . . L e

AFQUMENTS . . . o o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e e
See AlSO. . . . L

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L

AFQUMENTS . . . o o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o e
ReturnValues e
Remarks e
See AlSO. . . . L e

ReturnValues
Remarks
SEE AlSO. . . . e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS L
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
Example
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

Xi

Contents

xii

AFQUMENTS . . . o o e e
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS . . . o o
ReturnValues e
Remarks e
See AlSO. . . . L e

AQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . .

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS L
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS L
ReturnValues e
Remarks e
See AlSO. . . . L e

Contents

Xiv

AFQUMENTS . . . o o e e
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o e
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AQUMENTS o e
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o e
ReturnValues e
Remarks e
EXample e
See AlSO. . . . L e

AFQUMBNTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

AQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e
PyModifyDSN2() e 196

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e e
See AlSO. . . . L e

AFQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e
See AlSO. . . . L e

ArQUMENTS o
ReturnValues e
Remarks e e
See AlSO. . . . L e
PuStart() 214

Contents

XVi

SYNIAX. . . . e e 214
AFQUMENTS o 214
ReturnValues e 214
Remarks e 214
EXample e 214
See AlSO. . . . e 214
PVStop() . . . o e 215
SYNIAX. . . . e 215
AFQUMENTS o 215
ReturnValues e e 215
Remarks e 215
EXample e 215
See AlSO. . . . e 215
PvUnSecureDatabase() 216
SYNIAX. . . . e e 216
AFQUMENTS . . . o o 216
ReturnValues e 216
Remarks e 216
See AlSO. . . . e 217
PvValidateLicenses() i e 218
SYNIAX. . . . e e 218
AQUMENTS o 218
ReturnValues e e 218
Remarks e 218
EXample e 218
See AlSO. . . . e 218

About This Manual

This manual contains information about the PSQL Distributed Tuning Interface components provided
as part of the PSQL v12 Software Developers Kit (SDK).

XVii

Who Should Read This Manual

This document is designed for any user who is familiar with PSQL and wants to develop administrative
applications using the Distributed Tuning Interface.

This manual does not provide comprehensive usage instructions for the software or instructions for
using other database access methods. It does provide a reference for using the Distributed Tuning
Interface.

Actian Corporation would appreciate your comments and suggestions about this manual. As a user of
our documentation, you are in a unique position to provide ideas that can have a direct impact on future
releases of this and other manuals. If you have comments or suggestions for the product documentation,
post your request at the Community Forum on the PSQL Web site.

Xviii

Conventions

Unless otherwise noted, command syntax, code, and examples use the following conventions:

CASE

Bold

Monospaced
font

[1]

variable

Commands and reserved words typically appear in uppercase
letters. Unless the manual states otherwise, you can enter
these items using uppercase, lowercase, or both. For
example, you can type MYPROG, myprog, or MYprog.

Words appearing in bold include the following: menu names,
dialog box names, commands, options, buttons, statements,
and so forth.

Monospaced font is reserved for words you enter, such as
command syntax.

Square brackets enclose optional information, as in [log_name].

If information is not enclosed in square brackets, it is required.

A vertical bar indicates a choice of information to enter, as in
[file_name | @file_name].

Angle brackets enclose multiple choices for a required item, as
in /D=<5|6]7>.

Words appearing in italics are variables that you must replace
with appropriate values, as in file_name.

An ellipsis following information indicates you can repeat the
information more than one time, as in [parameter...].

The symbol ::= means one item is defined in terms of another.
For example, a::=b means the item a is defined in terms of b.

XiX

XX

chapter

Distributed Tuning Interface (1

Guide

This chapter introduces you to PSQL Distributed Tuning Interface. This chapter contains the following
topics:

Overview of Distributed Tuning Interface

Basics Of Using DTI

Sample Programs For DTI

Common Tasks With DTI

Distributed Tuning Interface Guide

Overview of Distributed Tuning Interface

The purpose of Distributed Tuning Interface (DTI) is to provide an application programming interface
for configuration, monitoring, and diagnostics of PSQL components.

Note For brevity, throughout the rest of this manual Distributed Tuning Interface is referred to by
as DTI.

String Arguments Encoding

A user application uses the client’s OS encoding at the API level. DTI handles internally the differences
between OS encodings on the server and client.

If an older client is communicating with the server, the database engine assumes that the client is using
an encoding compatible with those available on the server.

API Categories

The categories of available APIs are summarized in Table 2, DTI Function Groups.

Execution Privileges

Generally, you want your DT application to be able to call any of the DTI functions and view or modify
all configuration settings. To ensure this full access, connect to the server by providing a name and
password of a user with administrative level privileges on the server machine. This applies if the DTI
application is running locally through a Terminal Services session or running remotely. An application
running locally can omit the user name and password and still be able call any of the DTI functions and
view or modify all configuration settings. See Making a Connection to a Server Using DTI.

Without administrator level privileges, an application running locally through a Terminal Services
session or running remotely returns an access error for most of the DTI functions. Only a subset of the
functions work. For example, many of the functions that can modify configuration settings when full
access is permitted are restricted to read-only access.

Basics Of Using DTI

Basics Of Using DTI

Header Files

The DTI functions are defined in the following header files:

= Dbtitypes.h
= catalog.h
= config.h

= connect.h
s ddfh

= dticonst.h

= dtilicense.h
= monitor.h

Link Libraries

The following table lists the link libraries for DTI and the PSQL version in which the library was first
available. Link your application to the appropriate library as defined in the table.

Table1 DTI Link Libraries for Windows, Linux, and OS X

Library1 Windows Linux OS X Version of PSQL Library First Available
w3dbav90.lib? 32-bit PSQL v9.0

wb4dba.lib 64-bit PSQL v10.0

w3dbavs0.lib? 32-bit Pervasive.SQL V8.0

w3dbav78.lib? 32-bit Pervasive.SQL 2000i (SP3)
w3dbav75.lib% 32-bit Pervasive.SQL 2000

libpsqldti.so 32-hit Pervasive.SQL V8.5

libpsqldti.so 64-bit PSQL 10.10

libpsgldti.dylib 64-bit PSQL v12.01

T All libraries have been compiled with Microsoft Visual Studio 2005.

2 Each 32-hit library is a superset of the previous library. For example, w3dbav90.lib is a superset of w3dbav75.lib,
w3dbav78.lib, and w3dbav80.lib.

The functions for the DTI are documented in Distributed Tuning Interface Reference.

Before Calling Any Functions

When you want to invoke DTI, you must first call the PvStart() function. Then you can call multiple DTI
functions before ending the session.

When ending a session, you must call PvStop() to close the session.

Distributed Tuning Interface Guide

Sample Programs For DTI

By default, the runtime files for the DT access method are installed with the PSQL database engine and
with the PSQL Client. At a minimum, you need the PSQL Client to create a DTI application.

The header files and sample files are available via Web download. Sample files pertaining to a particular
development environment are installed in separate directories, as shown in the following table.

Development Location
Environment

MS Visual C++ 8 install_location\SAMPLES\MSVC2005

MS Visual C++ 7 install_location\SAMPLES\MSVC2003

MS Visual C++ 6 install_location\SAMPLES\MSVC

Delphi 5 install_locatio’\SAMPLES\DELPHI5

For additional information, see the DTI readme file (readme_dti.htm) installed with the PSQL database
engine.

Common Tasks With DTI

Common Tasks With DTI

This section outlines key tasks that are often used with DTI.

Making a Connection to a Server Using DTI

This documents the procedure for obtaining a connection handle to a server, which is a first step for
many DTI functions.

> To obtain a Connection handle to a server
1 Starta DTI session

// initialize status code return

BTI LONG status = 0;

// Call PvStart function with its reserved
// parameter

status = PvStart (0);
2 Connect to a server

// initialize variables

BTI LONG status = 0;

BTI CHAR PTR uName = "jsmith";
BTI CHAR PTR pword = "123";
BTI CHAR PTR svrName = "myserver";

BTI LONG hConn = OxXFFFFFFFF;

// after execution, hConn contains connection

// handle to pass to other functions

status = PvConnectServer (svrName, uName, pword, &hConn);

// if status != 0, handle errors now

Connection handles are required by many DTI functions. You can have multiple connections open at a
time. For each connection or handle, however, you should call the PvDisconnect() function to release
the handle.

status = PvDisconnect (phConn) ;

Obtaining a Setting ID Using DTI

Many of the configuration functions take a setting ID as a parameter. This procedure describes the
prerequisite functions for obtaining a setting ID.

> To obtain the ID for a Specific Setting

1 Perform the procedure Making a Connection to a Server Using DTI to obtain a connection handle.

2 Using the connection handle returned by PvConnectServer(), obtain a list of categories by calling
PvGetCategoryList().

3 For each category, get the list of settings using PvGetSettingList() and the settings count using
PvGetSettingListCount().

4 Scan for the setting that you want.

Distributed Tuning Interface Guide

5 Retrieve information about the setting using PvGetSettinginfo().
6 When done, disconnect from the server by calling PvDisconnect().
7 End the DTI session by calling PvStop().

Passing a DTI Structure as a Parameter

Many functions require that you pass a DTI structure when making the functional call. The following
code segment shows an example of a function call including a structure. See DTI Structures for more
information about DT structures.

WORD rValue = P OK;

TABLEMAP* tableList;

WORD tableCount;

rValue = PvGetTableNames (m DictHandle, &tablelList, &tableCount);

chapter

Distributed Tuning Interface 2
Reference (

The purpose of DTI is to provide an interface for configuring, monitoring, and diagnosing PSQL
components. DTI provides the functionality of PSQL utilities from within your application.

This chapter contains the following sections:

= Using the DTI Function Reference
m DTI Functional Groups

s DTI Error Messages

s DTI Structures

m DTI Calling Sequence

m DTI Function Definitions

Distributed Tuning Interface Reference

Using the DTI Function Reference

For each function, the following information is provided:

Brief description—provides a short description of the function.
Syntax—shows the C prototype syntax for the function.

Arguments—provides detailed descriptions of the function arguments, and indicates which values
are modified by the function. Parameters marked “in” are input-only, not modified by the function.
Parameters marked “out” contain values modified by the function. Parameters marked “in/out”
contain values that are both used by the function as input and modified by the function.

Return Values—lists the possible return values and their meanings.

Remarks—provides additional explanation about a function’s parameters, effects, or usage.
Example—provides a sample code segment showing the function’s use.

See Also—lists related functions and topics.

DTI Functional Groups

DTI Functional Groups

The Distributed Tuning Interface is divided into functional groupings. For a summary of these
groupings, please see the following table. The function descriptions begin in the following section in
alphabetical order.

Table2 DTI Function Groups

Function Group

Purpose

List of Functions

Catalog

catalog.h

Managing the database catalog information, such as creating,
opening, copying, or closing named databases, and creating,
modifying or deleting data source names (DSNs),

PvCheckDblnfo()
PvCloseDatabase()
PvCopyDatabase()
PvCountDSNs()
PvCreateDatabase()
PvCreateDatabase2()
PvCreateDSN() (deprecated)
PvCreateDSN2() (deprecated)
PvDeleteDSN() (deprecated)
PvDropDatabase()
PvFreeDbNamesData()
PvGetDbCodePage()
PvGetDbDataPath()
PvGetDbDictionaryPath()
PvGetDbFlags())
PvGetDbName()
PvGetDbNamesData()
PvGetDbServerName()
PvGetDSN() (deprecated)
PvGetDSNEX() (deprecated)
PvGetDSNEX2() (deprecated)
PvGetEnginelnformation()
PvListDSNs() (deprecated)
PvModifyDatabase()
PvModifyDatabase2()
PvModifyDSN() (deprecated)
PvModifyDSNZ2() (deprecated)
PvOpenDatabase()

Distributed Tuning Interface Reference

Table2 DTI Function Groups continued

Function Group

Purpose

List of Functions

Configuration

config.h

Controlling the configuration settings for the database engines, the
communication managers, and the local requester components.

PvCountSelectionltems()
PvGetAllPossibleSelections()
PvGetBooleanStrings()
PvGetBooleanValue()
PvGetCategorylnfo()
PvGetCategoryList()
PvGetCategoryListCount()
PvGetLongValue()
PvGetSelectionString()
PvGetSelectionStringSize()
PvGetSelectionValue()
PvGetSettingHelp()()
PvGetSettingHelpSize()
PvGetSettingInfo()
PvGetSettingList()
PvGetSettingListCount()
PvGetSettingMap()
PvGetSettingUnits()
PvGetSettingUnitsSize()
PvGetStringType()
PvGetStringValue()
PvGetStringValueSize()
PvGetValueLimit()
PvlIsSettingAvailable()
PvSetBooleanValue()
PvSetLongValue()
PvSetSelectionValue()
PvSetStringValue()

Connection

connect.h

Starting and stopping a DT session, connecting to a server, retrieving
the name of the connected server, and disconnecting from a server.

PvConnectServer()
PvDisconnect()
PvGetServerName()
PvStart()

PvStop()

Dictionary

ddf.h

Creating and closing dictionaries (DDFs), and creating or deleting
tables, indexes, users and groups.

PvAddindex()
PvAddTable()
PvAddUserToGroup()
PvAlterUserName()
PvAlterUserPassword()
PvCloseDictionary()
PvCreateDictionary()
(deprecated)
PvCreateGroup()
PvCreateUser()
PvDropGroup()
PvDroplndex()
PvDroplndexByName()
PvDropTable()
PvDropUser()
PvFreeTable()
PvFreeTableNames()
PvGetError()
PvGetTable()
PvGetTableNames()
PvGetTableStat()
PvGetTableStat2()
PvOpenDictionary() (deprecated)
PvRemoveUserFromGroup()

10

Table 2

DTI Function Groups continued

DTI Functional Groups

Function Group

Purpose

List of Functions

License
Administration

dtilicense.h

Administering licensing such as authorizing or deauthorizing a key or
retrieving information about keys.

PvAddLicense()
PvValidateLicenses()
PvDeleteLicense()
PvGetProductsinfo()

Monitoring and

Monitoring files, clients, and SQL connections, such as the following

PvDisconnectMkdeClient()

Diagnostic information for the MicroKernel Engine: PvDisconnectSQLConnection()
PvFreeMkdeClientsData()
monitor.h Active Files—count and list open files, query if file is open, query user PvFreeOpenFilesData()
who opened/locked the file, obtain page size, read-only flag, record PvFreeSQLConnectionsData()
locks, transaction locks, number of handles, obtain handle information PvGetFileHandlesData()
for each handle. PvGetFileHandlelnfo()
Active Clients—count and list clients, query active handles, obtain PvGetFlleInfo(.)
client information, obtain handle information, disconnect a client and E‘\ggmtjﬁg::g:::gg()
all client functionaliy. PvGetMkdeClientHandlesData()
Resource Usage—retrieve current, peak, and maximum settings for | PvGetMkdeClientHandlelnfo()
data, including files, handles, clients, worker threads, licenses in use, | PvGetMkdeClientsData()
transactions, locks. PvGetMkdeCommStat()
PvGetMkdeCommStatEx()
Communications Statistics—retrieve all communications statistics, PvGetMkdeUsage()
total, delta, current, peak, maximum where appropriate, reset delta PvGetMkdeUsageEx()
functionality. PvGetMkdeVersion()
PvGetOpenFilesData()
PvGetOpenFileName()
PvGetSQLConnectionsData()
PvGetSQLConnectionInfo()
Security Enabling, disabling, or querying the status of security on databases. | PvisDatabaseSecured()
) PvSecureDatabase()
security.h PvUnSecureDatabase()

11

Distributed Tuning Interface Reference

DTI Error Messages

Refer to dticonst.h and ddfstrct.h for the defined status codes.

12

DTI Structures

DTI Structures

The following describes the structures used in DTI. Each structure grouping details the type of
structures included and any notable settings or arguments that may be required. Structures are stored in
the following header files:

= CONFIGH
= DDFSTRCT.H
= MONITOR.H

For detailed information specific to each structure, refer to the corresponding header file for that
structure.

CONFIG.H Structures

The following lists the structures included in CONFIG.H. For detailed information about any of these
structures, refer to the config header file.

s PVCATEGORYINFO
s PVSETTINGINFO

DDFSTRCT.H Structures

The following lists the structures included in DDFSTRCT.H. For detailed information about any of these
structures, refer to the ddf header file.

= TABLEMAP
= TABLEINFO
s TABLEINFO Flags

B _FLAG_TRUE NULLABLE = 64

Table is true nullable. When the table is created, a one byte null indicator is added before each
column that is nullable.

s TABLESTAT

s TABLESTAT2

= COLUMNMAP

s COLUMNMAP Flags

B_FLAG CASE SENSITIVE = 1
Column values are case sensitive on comparisons and as part of index segments.
B FLAG NULLABLE = 4

If the table is created as true nullable, then a one byte null indicator column is added before the
column value to indicate whether the column value is null.

B _FLAG NTEXT = 2048

If acolumnis created as B_TYPE_BLOB, the data is treated as wide-character rather than character
data.

B _FLAG BINARY = 4096

13

Distributed Tuning Interface Reference

If a column is created as B_TYPE_STRING or B_TYPE_BLOB, the data is treated as binary rather
than character data.

s COLUMNMAP Data Types
COLUMNMAP DataType can take the following values:

B TYPE STRING = O,
B TYPE INTEGER = 1,
B TYPE FLOAT = 2,
B TYPE DATE
B TYPE TIME = 4,
B TYPE DECIMAL = 5,
B TYPE MONEY = 6,
B TYPE LOGICAL = 7,

Il
w
~

B TYPE NUMERIC

I
[oe
~

B TYPE BFLOAT = 9,

B _TYPE LSTRING = 10,
B TYPE ZSTRING
B _TYPE NOTE = 12,

B TYPE LVAR = 13,

B _TYPE BINARY = 14,

B TYPE AUTOINC = 15,

B _TYPE BIT = 16,

B TYPE NUMERSTS = 17,
B _TYPE NUMERSA = 18,

B TYPE CURRENCY = 19,
B _TYPE TIMESTAMP = 20,
B TYPE BLOB = 21,

B _TYPE GDECIMAL = 22,
B TYPE WSTRING = 25,

Il
=
=

~

B _TYPE WZSTRING = 26,
B TYPE GUID = 27,
B _TYPE DATETIME = 30

= INDEXMAP
n INDEXMAP Flags

B FLAG DUPLICATES = 1
Duplicates allowed in index.

B FLAG MODIFIABLE = 2

Index is modifiable.

B _FLAG SORT DESCENDING = 64
Sort index descending.

B FLAG PARTIAL = 512

14

DTI Structures

Index is partial. Partial Index flags on segments that are not the last segment in the index, are
ignored. Partial Indexes only apply to the last segment in an index.

Differences Between TABLESTAT2 and TABLESTAT
Note the following differences between the new TABLESTAT2 structure and the TABLESTAT structure:

m The fields for tableName and tableLocation allow more characters.
» The numberOfRecords field increased from 16 bits to 32 bits.

» File attribute fields were previously characters with values of “Y” or “N” to indicate whether the
attribute is present or not. Attribute fields are now single byte integers with values of 1 or 0. A value
of 1 means the attribute is present.

= The freespaceThreshold field is now an integer data type.

= The field fileVersion is no longer a float data type. It is now a single byte integer that contains the
same value as what the Btrieve STAT operation would return. For the 9.5 file format, the value
returned is be 0x95.

= Anew field, pageCompression, indicates whether the physical file associated with the table has
compressed pages or not.

= Previous fields dataCompression and systemDataKey have been renamed to recordCompression
and systemData, respectively.

Backwards Compatibility

PSQL clients can still make PvGetTableStat calls to the database engine. The database engine converts
the reply message to a TABLESTAT2 structure or to a TABLESTAT structure as required based on the
version of the client.

A PSQL v12 client determines the version of the database engine to which the client is connected. If the
database engine version is prior to PSQL v12, then PvGetTableStat2 returns a TABLESTAT structure and
sets the value returned for pageCompression to 0.

MONITOR.H Structures

The following lists the structures included in MONITOR.H. For detailed information about any of these
structures, refer to the monitor header file.
s PVDATETIME

= PVFILEINFO

= PVFILEHDLINFO

= PVCLIENTID

= PVMKDECLIENTINFO

s PVMKDECLIENTHDLINFO

s PVMKDEUSAGE

s PVMKDEUSAGEEX

= PVVERSION

= PVCOMMSTAT

= PVCOMMSTATEX

= PVCOMMPROTOCOLSTAT

15

Distributed Tuning Interface Reference

= PVSQLCONNINFO
= PVSQLCONNID

16

DTI Calling Sequence

DTI Calling Sequence
All Distributed Tuning Interface calls must initialize a DTI session by first calling PvStart().
status = PvStart (0);

// insert multiple DTI function calls here

status = PvStop(0);

The Remarks section of every function lists additional prerequisites and post requisites for that
particular function.

17

Distributed Tuning Interface Reference

DTI Function Definitions

The following section contains an alphabetical reference for the DTI functions.

18

DTI Function Definitions

PvAddindex()
Adds indexes specified in indexList to the existing table and to the underlying data file.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvAddIndex (
WORD dictHandle,
LPCSTR tableName,
INDEXMAP* indexList,
WORD indexCount) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of the table where the indexes will be added.
In indexList Array of index definitions.
In indexCount Number of indexes in the indexList array.

Return Values

PCM_Success The operation completed successfully.

PCM_errFailed The operation did not complete successfully.

PCM_errinvalidDictionaryHandle | The specified dictionary handle does not exist.

PCM_errTableNotFound The specified table was not found.

PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errinvalidindexName The specified index name is invalid.

PCM_errColumnNotFound The specified column was not found in the table.
Remarks

You must first open a dictionary successfully using PvOpenDatabase().
The table specified by tableName must exist in the dictionary specified by dictHandle.

You will need to allocate and release INDEXMAP array used to describe the indexes.

See Also

PvStart()
PvOpenDatabase()
PvDropIndex()

19

Distributed Tuning Interface Reference

PvDropIndexByName()
PvCloseDictionary()
PvStop()

20

DTI Function Definitions

PvAddLicense()
Applies (authorizes) the specified license from the computer indicated by the connection.
Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav80.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvAddLicense (
BTI_LONG hConnection,
BTI_CHAR PTR license) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are
obtained with the PvConnectServer() function.
In license License to be applied (authorized).

Return Values

P_OK The operation completed successfully.

P_E_FAIL The operation did not complete successfully.

P_E_LIC_ALREADY_INSTALLED The license is already applied.

P_E_LIC_INVALID The license specified is invalid.

Status code pertaining to license administration or to See Status Codes and Messages for License Administrator

authorization Status Codes and Authorization Status Codes.
Remarks

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Example

BTI CHAR PTR add lic = "ERXVD3U4ZS9KR94QPDHV5BN2";
status = PvAddLicense (P _LOCAL DB CONNECTION, add lic);
See Also

PvValidateLicenses()

PvDeleteLicense()

PvGetProductsinfo()

21

Distributed Tuning Interface Reference

PvStop()
PvStart()

22

DTI Function Definitions

PvAddTable()

Creates a new table in the existing dictionary and a data file at the location specified in the table
properties.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvAddTable (
WORD dictHandle,
TABLEINFO* tableProps,
COLUMNMAP* columnList,
WORD columnCount,
INDEXMAP* indexList,
WORD indexCount) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableProps Structure containing table information.
In columnList Array of columns defined in the table.
In columnCount Number of columns in columnList.
In indexList Array of index definitions.
In indexCount Number of indexes in the following indexList array.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errinvalidDictionaryHandle | The specified dictionary handle does not exist.

PCM_errTableNotFound The specified table was not found.
PCM_errMemoryAllocation An error occurred during memory allocation.
PCM_errinvalidColumnName The specified column name is invalid.
PCM_errinvalidDataType The specified data type is invalid.

PCM_errDuplicateColumnName | The column name already exists in the table.

PCM_errinvalidDataSize The data size is invalid.
PCM_errinvalidindexName Index name is invalid.
PCM_errColumnNotFound Column specified for a segment cannot be found.

23

Distributed Tuning Interface Reference

Remarks
You must first open a dictionary successfully using PvOpenDatabase().

This function has to be provided with table information, columns, and indexes. indexCount and
indexList are optional parameters because indexes are not required to create a table.

This function will fail if a table with the same name is already present in the specified dictionary.
Table properties must be set up correctly and an array of at least one column must be passed.

You will need to allocate and release COLUMNMAP and INDEXMAP arrays and TABLEINFO structure
used to describe table. See also COLUMNMAP Flags.

The offset of a field within its row can be accessed through the PvGetTable() function. The
COLUMNMAP structure has been modified in ddfstrct.h to contain this additional information. This
new field is ignored when calling the PvAddTable() and PvFreeTable() functions. Refer to ddfstrct.h and
ddf.h.

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvFreeTableNames()
PvDropTable()
PvCloseDictionary()
PvStop()

24

DTI Function Definitions

PvAddUserToGroup()
Adds an existing user to an existing group in the database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvAddUserToGroup (
BTI_WORD dbHandle,
const BTI CHAR* user,
const BTI CHAR* group) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name
In group Database group name

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errinvalidAccountName The specified account or user name does not exist.

PCM_errUserAlreadyPartOfGroup | User already part of the group.

PCM_errDatabaseHasNoSecurity | Database has no security.

PCM_errSessionSecurityError Database opened with insufficient privilege.

Remarks

This function will fail if the specified group or user do not already exist in the database, or if the user is
a member of another group.

The following preconditions must be met:

= You must first open a database successfully using PvOpenDatabase() as user ‘Master'.
m The associated database has database-level security enabled.

= The user and group already exist in the specified database.

= The user is not a member of another group.

The following post condition must be met:

m Use PvCloseDatabase() to free the resources.

25

Distributed Tuning Interface Reference

See Also

PvAlterUserName()
PvCreateGroup()
PvCreateUser()
PvDropGroup()
PvDropUser()
PvRemoveUserFromGroup()
PvOpenDatabase()
PvCloseDatabase()

26

DTI Function Definitions

PvAlterUserName()
Alters an existing user's name in the specified database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvAlterUserName (
BTI_WORD dbHandle,
const BTI CHAR* user,
const BTI CHAR* newName) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In newName New name for the database user. If set to NULL, the function fails.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errinvalidAccountName The specified account or user name does not exist, or the new name is invalid.
PCM_errUserAlreadyExists New user name already exists.

PCM_errDatabaseHasNoSecurity | Database has no security.

PCM_errSessionSecurityError Database opened with insufficient privilege.

Remarks
This function will fail if newName is set to NULL, or if newName is already present in the database.
The following preconditions must be met:

= You must first open a dictionary successfully using PvOpenDatabase() as user 'Master'.
m The associated database has database-level security enabled.

= The user name must already exist in the specified database.

= The new user name cannot already exist in the specified database.

The following post condition must be met:

m Use PvCloseDatabase() to free the resources.

27

Distributed Tuning Interface Reference

See Also

PvAlterUserPassword()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateUser()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

28

PvAlterUserPassword()
Alters an existing user's password.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dll (Windows), libpsgldti.so (Linux), libpsqldti.dylib

(OS X) (See also Link Libraries)

DTI Function Definitions

Syntax
PRESULT DDFAPICALLTYPE PvAlterUserPassword(
BTI WORD dbHandle,
const BTI CHAR* user,
const BTI CHAR* newPassword) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In newPassword New user password. If set to NULL, the password is cleared.

Return Values

PCM_Success

The operation was successful.

PCM_errFailed

The operation was not successful.

PCM_errinvalidAccountName

The specified account or user name does not exist.

PCM_errDatabaseHasNoSecurity

Database has no security.

PCM_errSessionSecurityError

Database opened with insufficient privilege.

Remarks

The following preconditions must be met:

= You must first open a database successfully using PvOpenDatabase() as user ‘Master".

m The associated database has database-level security enabled.
= The user name must already exist in the specified database.

The following post condition must be met:

= Use PvCloseDatabase() to free the resources.

See Also

PvAlterUserName()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateUser()

29

Distributed Tuning Interface Reference

PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

30

DTI Function Definitions

PvCheckDblnfo()
Checks the consistency of a database.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvCheckDbInfo (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI ULONG checkFlags) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of an existing named database. A list of all named databases for a particular server is obtained
with the PvGetDbNamesData() function. A single named database from the resulting list can be
obtained with the PvGetDbName() function.

In checkFlags Reserved. The function checks for all database flags.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Connection handle that identifies the server is invalid.

P_E_NULL_PTR The function was called with a null pointer.
P_E_ACCESS_RIGHT Insufficient access rights to call the function.
P_E_NOT_EXIST Named database specified in dbName does not exist.
P_E_FAIL A general failure occurred.

Remarks

If the database is consistent, then the return value for this function is P_OK. If the database is not
consistent or if the function call fails, then the return value is one of the error codes listed above.

Example
BTI WORD res; // returned value from function call
BTI_CHAR PTR dbName; // database name
BTI ULONG checkFlags; // database flags
BTI_LONG hConnection; // connection handle
BTI LONG reserved;

// reserved value for PvStart() and PvStop/()

31

Distributed Tuning Interface Reference

// Initialize variables.

dbName = “demodata”;
// The name of the database is demodata
checkFlags = OxFFFFFFFF; // Checks all flags

hConnection = P LOCAL DB CONNECTION;
// Set the connection handle to local connection

// P_LOCAL DB CONNECTION is defined in config.h
reserved = 0;

// Start a DTI session before making any DTI calls.
res = PvStart (reserved):;

if (res == P_OK)
{
// DTI session started successfully.
// You can now make multiple DTI calls here.

res = PvCheckDbInfo (hConnection,
dbName,
checkFlags) ;
if (res == P OK)

{

// Database is consistent.

else

{
// Put your code here to handle the error code
// returned from PvCheckDbInfo ().

// Close DTI session.
Res = PvStop (&reserved);

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvFreeDbNamesData()
PvDisconnect()
PvStop()

32

PvCloseDatabase()

Closes an open database handle.

DTI Function Definitions

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also Link Libraries)

Syntax
PRESULT PvCloseDatabase (
BTI_WORD dbHandle) ;
Arguments
In dbHandle

Handle to a database opened by PvOpenDatabase().

Return Values

PCM_Success

The operation was successful.

PCM_errFailed

Operation was not successful.

PCM_errMemoryAllocation

An error occurred during memory allocation

PCM_errDictionaryNotOpen

No database open with specified handle.

Remarks

The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= Valid database handle returned by PvOpenDatabase().

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvDisconnect()
PvStop()

33

Distributed Tuning Interface Reference

PvCloseDictionary()
Closes an open dictionary.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvCloseDictionary (
WORD dictHandle) ;
Arguments
In dictHandle Handle of an open or newly-created dictionary.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errMemoryAllocation | An error occurred during memory allocation.

PCM_errDictionaryNotOpen | The specified dictionary was not open.

Remarks

This function requires a handle for an open dictionary file, which can be obtained with the
PvCreateDictionary() function.

Since multiple dictionaries can be open at one time, you need to call this function for every open or
newly-created dictionary.

Example
PRESULT status = 0;
status = PvCloseDictionary (myDictionaryHandle) ;
See Also
PvStart()
PvOpenDatabase()
PvCreateDictionary()
PvStop()

34

PvConnectServer()

DTI Function Definitions

Attempts to connect to the target server that has the PSQL database engine installed. If connection is
established successfully, a connection handle is returned for subsequent references.

Header File: connect.h (See also Header Files)
Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also Link Libraries)

Syntax

BTI SINT PvConnectServer (
BTI CHAR PTR serverName,
BTI CHAR PTR userName,
BTI CHAR PTR password,
BTI LONG PTR phConnection) ;

Arguments

In serverName Server name or IP address to which you want to connect.

See also Drive-based Formats in Getting Started With PSQL.

on omitting this parameter.

In userName User name with which you will connect to the serverName. See the Remarks section for information

In password User password. See the Remarks section for information on omitting this parameter.
In/ phConnection | Address of a long integer that receives the connection handle if connection is successful.
Out

Return Values

P_OK The operation was successful.
P_E NULL_PTR Call with NULL pointer.
P_E_FAIL Failed to connect to the named server.

P_E_SERVER_NOT_FOUND

The specified server was not found

P_E_ENGINE_NOT_LOADED

The specified engine is not running.

P_E_REQUESTER NOT_LOADED

The client requester is not loaded.

P_E_SERVER_TABLE_FULL

The internal server name table is full.

P_E_CLIENT_CONNECTIONS_LIMIT_REACHED

The operation could not connect because the limit on client
connections has been reached. Check the configuration of the server.

P_E_PERMISSION_ERROR

The operation encountered a permissions error.

P_E_NO_MEMORY

The operation encountered a memory error.

P_E_NO_AVAILABLE_TRANSPORT

No remote connection could be established.

P_E_CONNECTION_LOST

The remote connection to the server was lost.

35

Distributed Tuning Interface Reference

Remarks

You must know the name of the server to which you want to connect. You can have open connections to
multiple servers.

An application running locally where the database engine is running can omit the user name and
password and still be able call any of the DTI functions and view or modify all configuration settings.

However, if the DTI application is running locally through a Terminal Services session or running
remotely, provide the user name and password of a user with administrative level privileges on the server
machine. This ensures that the application has full access for the DTI functions. Without administrator
level privileges, an application returns an access error for most of the DTI functions. Only a subset of the
functions work. For example, many of the functions that can modify configuration settings when full
access is permitted are restricted to read-only access.

Note You must call PvStart() to initialize DTI before attempting to connect to a server using this
function.

Example

BTI CHAR PTR uName = "jsmith";

BTI CHAR PTR pword = “123";

BTI CHAR PTR svrName = “myserver”;
BTI LONG PTR phConn = OxFFFFFFFF;
BTI SINT status = 0;

status = PvConnectServer (svrName,

uName,
pword,
&phConn) ;

See Also

PvStart()

PvGetServerName()

PvDisconnect()

PvStop()

36

DTI Function Definitions

PvCopyDatabase()
Copies a database to a new database, adjusting the referential integrity if needed.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvCopyDatabase (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI CHAR PTR newdbName,
BTI CHAR PTR newdictPath,
BTI CHAR PTR newdataPath) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database to copy.

In newdbName Name of the new database.

In newdictPath Dictionary path of the new database.

In newdataPath Data path. Pass an empty string to use the default data path (that is, the same as the dictionary path)

If you want to create a new database that consists of MicroKernel Engine data files located in multiple
paths, specify this parameter as a semicolon (;) delimited list. For example:
C:\data\pathl;C:\data\path2

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer
P_E_ACCESS_RIGHT Insufficient access right for the operation

P_E_DICTIONARY_ALREADY_EXISTS | Cannot create dictionary because it already exists.

P_E_SHARED_DDF_EXIST The dictionary path is being used by another database.
P_E_DUPLICATE_NAME Named database already exists on the server.
P_E_FAIL Failed for other reasons.

37

Distributed Tuning Interface Reference

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Example
BTI LONG connectionHandle = P LOCAL DB CONNECTION;
BTI CHAR PTR newdataPath = “c:\\data\\gallery2”;
BTI CHAR PTR newdictPath = “c:\\data\\gallery2”;
BTI CHAR PTR databaseName = “Gallery”;
BTI CHAR PTR newdatabaseName = “GalleryCopy”;
BTI SINT status = 0;
BTI CHAR PTR server = “MyServer”;
BTI CHAR PTR user = “Administrator”;
BTI CHAR PTR pwd = “Admin”;

//only need to connect to server if it is remote
//otherwise can pass P_LOCAL DB CONNECTION for the handle

status = PvCopyDatabase (
connectionHandle,
databaseName,
newdatabaseName
dictPath,

dataPath) ;

See Also

PvStart()
PvConnectServer()
PvCreateDatabase()
PvGetDbFlags()
PvModifyDatabase()
PvDropDatabase()
PvDisconnect()
PvStop()

38

PvCountDSNs()

Retrieves the number of datasource names (DSN).

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvCountDSNs (

DTI Function Definitions

BTI_LONG hConnection,
BTI ULONG PTR pdsnCount,
BTI CHAR filtering) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pdsnCount

Address of an unsigned long to receive the number of DSNs.

In filtering

Set to 1 if you only want PSQL DSNs. Set to 0 if you want all DSNs.

Return Values

P_OK

The operation was successful.

P_E_INVALID_HANDLE

Invalid connection handle.

P_E_NULL_PTR

Call with NULL pointer

P_E_FAIL

Failed for other reasons.

Remarks

The following preconditions must be met:

= DTl session started by calling PvStart().
= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

To retrieve the number of DSNs without having to prompt the user to login, pass empty strings for
username and password when establishing the server connection with PvConnectServer().

Note The connection established by passing empty strings for username and password is an insecure
connection, and will not have sufficient rights to perform most of the other operations in DTI.

39

Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvGetDSN()
PvDisconnect()
PvStop()

40

DTI Function Definitions

PvCountSelectionltems()

Count the number of selection items for a setting of types (PVSETTING_SINGLE_SEL or
PVSETTING_MULTI_SEL).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvCountSelectionItems (
BTI LONG hConnection,
BTI ULONG settingID,
BTI ULONG PTR pNumltems) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting. A list of categories can be obtained with the PvGetCategoryList()
function. A list of settings for a particular category can be obtained from PvGetSettingList().

Out pNumltems Address of an unsigned long that receives the number of selection items.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer

P_E_INVALID_DATA_TYPE The requested setting is not of selection type.

P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()

41

Distributed Tuning Interface Reference

PvDisconnect()
PvStop()

42

DTI Function Definitions

PvCreateDatabase()

Creates a database by adding an entry to dbnames.cfg file. This entry is later used to create DSNS.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvCreateDatabase (

BTI_LONG hConnection,

BTI CHAR PTR dbName,

BTI CHAR PTR dictPath,

BTI CHAR PTR dataPath,

BTI ULONG deIags) ;
Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In dbName Name of the database.

In dictPath Dictionary path.

In dataPath Data path. Pass an empty string to use the default data path (that is, the same as the dictionary path)
If you want to create a database that consists of MicroKernel Engine data files located in multiple
paths, specify this parameter as a semicolon (;) delimited list. For example:
C:\data\pathl;C:\data\path?2

In dbFlags Database flags, which can be a combination of the P_DBFLAG_ constants.

P_DBFLAG_RI (enforce integrity constraints, including referential integrity and triggers)

P_DBFLAG_BOUND (create DDF files and stamp the database name on the dictionary files so only
that database can use them. If the database is not bound, then several databases can use the same
dictionary file set.) If trying to create a bound database and you want to bind to DDF files that already
exist, specify both P_DBFLAG_CREATE_DDF and P_DBFLAG_BOUND.

P_DBFLAG_CREATE_DDF (create DDF files. The directory specified for dictPath has to exist.)

P_DBFLAG_DBSEC_AUTHENTICATION (use database security authentication, Mixed security
policy. See Btrieve Security Policy.)

P_DBFLAG_DBSEC_AUTHORIZATION (use database security authorization, Database security
policy. See Btrieve Security Policy.)

P_DBFLAG_LONGMETADATA (use V2 metadata. See Metadata Version.)

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer

43

Distributed Tuning Interface Reference

P_E_ACCESS_RIGHT Insufficient access right for the operation

P_E_DICTIONARY_ALREADY_EXISTS | Cannot create dictionary because it already exists.

P_E_SHARED_DDF_EXIST The dictionary path is being used by another database.
P_E_DUPLICATE_NAME Named database already exists on the server.
P_E_FAIL Failed for other reasons.

Remarks

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Btrieve Security Policy

The following table indicates how to specify a security model in a new database, or to interpret the
security model of an existing database. Using any other combination of flags for security will result in
status code 7024.

This Flag Combination Represents this Security Model

No flags Classic

P_DBFLAG_DBSEC_AUTHENTICATION Mixed

P_DBFLAG_DBSEC_AUTHENTICATION Database
P_DBFLAG_DBSEC_AUTHORIZATION

Metadata Version

If you specify P_DBFLAG_LONGMETADATA, the database property in dbnames.cfg is set to V2
metadata. If you specify P_DBFLAG_LONGMETADATA and P_DBFLAG_CREATE_DDF, the DDFs
created are also V2 metadata.

The result of DDF creation varies depending on the DDF versions that already exist in the dictionary
location.

Dictionary Location Contains | Result of DDF Creation

No DDFs New DDFs added to dictionary location

DDFs of other metadata version | New DDFs added to group of existing DDFs

DDFs of same metadata version | New DDFs overwrite existing DDFs. Information in old DDFs is lost.

For example, suppose that your dictionary location contains V1 metadata DDFs and you create V2
metadata DDFs. The dictionary location will then contain a combination of V1 metadata DDFs and V2
metadata DDFs. A particular database can use one set of DDFs or the other, but not both concurrently.

44

DTI Function Definitions

Example

The following example creates a database and DDFs that uses V2 metadata.

BTI LONG connectionHandle = P LOCAL DB CONNECTION;

BTI CHAR PTR dataPath = “c:\\data\\gallery”;
BTI CHAR PTR dictPath = “c:\\data\\gallery”;
BTI CHAR PTR databaseName = “Gallery”;

BTI SINT status = 0;

BTI CHAR PTR server = “MyServer”;

BTI CHAR PTR user = “Administrator”;

BTI CHAR PTR pwd = “Admin”;

//only need to connect to server if it is remote
//otherwise can pass P _LOCAL DB CONNECTION for the handle

status = PvCreateDatabase (
connectionHandle,
databaseName,

dictPath,

dataPath,

P _DBFLAG CREATE DDF,

P DBFLAG LONGMETADATA) ;

See Also

PvStart()
PvConnectServer()
PvGetDbFlags()
PvModifyDatabase()
PvDropDatabase()
PvDisconnect()
PvStop()

45

Distributed Tuning Interface Reference

PvCreateDatabase2()

Creates a database by adding an entry to dbnames.cfg file. This function is the same as
PvCreateDatabase() except that the database code page is also specified.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvCreateDatabase2 (
BTI LONG hConnection,
BTI CHAR PTR dbName,
BTI CHAR PTR dictPath,
BTI CHAR PTR dataPath,
BTI ULONG dbFlags,
BTI LONG dbCodePage) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database.
In dictPath Dictionary path.
In dataPath Data path. Pass an empty string to use the default data path (that is, the same as the dictionary path)

If you want to create a database that consists of MicroKernel Engine data files located in multiple
paths, specify this parameter as a semicolon (;) delimited list. For example:
C:\data\path1;C:\data\path2

46

DTI Function Definitions

In dbFlags Database flags, which can be a combination of the P_DBFLAG__ constants.
P_DBFLAG_RI (enforce integrity constraints, including referential integrity and triggers)

P_DBFLAG_BOUND (create DDF files and stamp the database name on the dictionary files so only
that database can use them. If the database is not bound, then several databases can use the same
dictionary file set.) If trying to create a bound database and you want to bind to DDF files that already
exist, specify both P_DBFLAG_CREATE_DDF and P_DBFLAG_BOUND.

P_DBFLAG_CREATE_DDF (create DDF files. The directory specified for dictPath has to exist.)

P_DBFLAG_DBSEC_AUTHENTICATION (use database security authentication, Mixed security
policy. See Btrieve Security Policy.)

P_DBFLAG_DBSEC_AUTHORIZATION (use database security authorization, Database security
policy. See Btrieve Security Policy.)

P_DBFLAG_LONGMETADATA (use V2 metadata. See Metadata Version.)

In dbCodePage For databases on Windows platforms, a number indicating the code page for database data and
metadata strings.

For databases on Linux and OS X distributions, one of the following to indicate the code page for
database data and metadata strings:

+ P_DBCODEPAGE_UTF8

+ P_DBCODEPAGE_EUCJP

+ P_DBCODEPAGE_IS08859_1

For databases on Windows, Linux, and OS X, a value of zero can also be used.

Zero indicates legacy behavior. That is, no code page is specified, which uses the operating system
(OS) encoding on the server machine. See also Database Code Page in PSQL User's Guide.

Note: The database engine does not validate the encoding of the data and metadata that an
application inserts into a database. The engine assumes that all data was entered using the encoding
of the server or the client as explained in Database Code Page and Client Encoding in Advanced
Operations Guide.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer
P_E_ACCESS_RIGHT Insufficient access right for the operation

P_E_DICTIONARY_ALREADY_EXISTS | Cannot create dictionary because it already exists.

P_E _SHARED_DDF_EXIST The dictionary path is being used by another database.
P_E_DUPLICATE_NAME Named database already exists on the server.
P_E_FAIL Failed for other reasons.

Remarks

The following preconditions must be met:

m DTl session started by calling PvStart().

47

Distributed Tuning Interface Reference

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.
Btrieve Security Policy and Metadata Version

See Btrieve Security Policy and Metadata Version, respectively.

See Also
PvConnectServer()
PvCreateDSN2()
PvDisconnect()
PvDropDatabase()
PvGetDbCodePage()
PvGetDbFlags()
PvGetDSNEX2()
PvModifyDatabase2()
PvStart()

PvStop()

48

DTI Function Definitions

PvCreateDictionary()

Creates a new set of dictionary files. Given a fully-qualified path for the dictionary, it returns a dictionary
handle that will be used for any subsequent calls to catalog functions.

Note This function is deprecated in PSQL 9 and higher versions. See PvCreateDatabase() and
PvOpenDatabase() to replace this function in your application.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsgldti.so (Linux), libpsqldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvCreateDictionary (
LPCSTR path,
WORD* dictHandle,
LPCSTR user,
LPCSTR password) ;
Arguments
In path Fully-qualified path to the dictionary files.
Out dictHandle Handle to be used in subsequent calls
In user User name used with the new dictionary. This argument can be set to NULL.
In password Used in conjunction with user name to create new dictionary files. Can also be NULL.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errPathNotFound The specified path is invalid.

PCM_errSessionSecurityError Either the user name or password is invalid.

PCM_errDictionaryAlreadyExists A set of ddf files already exists at the specified location.
Remarks

Use PvCloseDictionary() to free the resources.

49

Distributed Tuning Interface Reference

See Also

PvStart()
PvOpenDatabase()
PvGetDbDictionaryPath()
PvCloseDictionary()
PvStop()

50

PvCreateDSN(

Creates a new engi

DTI Function Definitions

)

ne data source name (DSN).

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also L

ink Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to create client DSNs
(or dsnadd utility on Linux and OS X).

Syntax

BTI API PvCreateDSN(
BTI_LONG hConnection,
BTI _CHAR PTR pdsnName,
BTI_CHAR PTR pdsnDesc,
BTI CHAR PTR pdsnDBQ,
BTI LONG openMode) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In pdsnName Name for the new DSN.
In pdsnDesc Description for the new DSN.
In pdsnDBQ Database name to which this DSN will connect. This name must already exist. To create a database
name, see PvCreateDatabase().
In OpenMode Open mode for the DSN, which is one of the following:
+ NORMAL_MODE
* ACCELERATED_MODE
+ READONLY_MODE
+ EXCLUSIVE_MODE

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer
P_E_INVALID_NAME The specified DSN name is invalid.
P_E_DSN_ALREADY_EXIST The specified DSN name already exists.
P_E_ACCESS_RIGHT Insufficient access right for the operation.
P_E_INVALID_OPEN_MODE The specified open mode is invalid.
P_E_FAIL Failed to retrieve data path.

o1

Distributed Tuning Interface Reference

Remarks
This function creates engine DSNs only. To create a client DSN, you must use the ODBC API.
The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= The database name referenced in the pdsnDBQ parameter must already exist. To create a database
name, see PvCreateDatabase().

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvModifyDSN()
PvGetDSN()
PvGetDSNEX()
PvDeleteDSN()
PvCountDSNs()
PvStop()

52

PvCreateDSN2()

Creates a new engine

DTI Function Definitions

data source name (DSN) and specifies the encoding option for data.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to create client DSNs

(or dsnadd utility on

Syntax

Linux and OS X).

BTI API PvCreateDSN2 (

BTI LONG

hConnection,

BTI CHAR PTR pdsnName,
BTI CHAR PTR pdsnDesc,
BTI CHAR PTR pdsnDBQ,
BTI LONG openMode,
BTI LONG translate) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In pdsnName Name for the new DSN.
In pdsnDesc Description for the new DSN.
In dsnDBQ Database name to which this DSN will connect. This name must already exist. To create a database
name, see PvCreateDatabase().
In OpenMode Open mode for the DSN, which is one of the following:
+ NORMAL_MODE
* ACCELERATED_MODE
+ READONLY_MODE
+ EXCLUSIVE_MODE
See also DSN Open Mode in ODBC Guide.
In translate Encoding option for data, which can be one of the following:
» DSNFLAG_DEFAULT
+ DSNFLAG_OEMANSI
+ DSNFLAG_AUTO
See also Encoding Translation in ODBC Guide. Note that DSNFLAG_DEFAULT corresponds to the
“None” encoding option in ODBC Administrator.

Return Values

P_OK

The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

53

Distributed Tuning Interface Reference

P_E_NULL_PTR Call with NULL pointer
P_E_INVALID_NAME The specified DSN name is invalid.
P_E _DSN_ALREADY_EXIST The specified DSN name already exists.
P_E_ACCESS_RIGHT Insufficient access right for the operation.
P_E_INVALID_OPEN_MODE The specified open mode is invalid.
P_E_INVALID_TRANSLATE_OPTION The specified encoding translation option is invalid.
P_E_FAIL Failed to retrieve data path.

Remarks

This function creates engine DSNs only and requires a PSQL v10 client or later. To create a client DSN,
you must use the ODBC API. (On Linux and OS X, you can also use the dsnadd utility to create a client
DSN.)

The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= The database name referenced in the pdsnDBQ parameter must already exist. To create a database
name, see PvCreateDatabase().

See Also
PvStart()
PvConnectServer()
PvListDSNs()
PvModifyDSN()
PvGetDSN()
PvGetDSNEX()
PvDeleteDSN()
PvCountDSNs()
PvStop()

54

DTI Function Definitions

PvCreateGroup()
Creates a new user group in the existing database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

PRESULT DDFAPICALLIYPE PvCreateGroup (
BTI_WORD dbHandle,
const BTI CHAR* group) ;

Arguments

In dbHandle Handle of an open database returned by PvOpenDatabase().

In Group Database group name.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errinvalidAccountName The specified group name is invalid.

PCM_errDatabaseHasNoSecurity | Database has no security

PCM_errSessionSecurityError Database opened with insufficient privilege

PCM_errGroupAlreadyExists Group already exists

Remarks
The following preconditions must be met:

= You must first open a database successfully using PvOpenDatabase() as user ‘Master'.
= The associated database has database-level security enabled.
= A group with the same name cannot already exist in the specified database.

The following post condition must be met:

m Use PvCloseDatabase() to free the resources.

See Also

PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateUser()
PvAlterUserName()
PvAlterUserPassword()

55

Distributed Tuning Interface Reference

PvDropGroup()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

56

PvCreateUser()

Creates a new user in the existing database. Optionally set a password and assign the new user to an

existing group.

DTI Function Definitions

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvCreateUser (
BTI_WORD dbHandle,
const BTI CHAR* user,
const BTI_ CHAR* password,
const BTI CHAR* group) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In password User password. If set to NULL, no password is set.
In group Database group name for user. If set to NULL, user is not assigned to a group.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errinvalidAccountName The specified account or user name is invalid.
PCM_errUserAlreadyExists User already exists.

PCM_errDatabaseHasNoSecurity | Database has no security.

PCM_errSessionSecurityError Database opened with insufficient privilege.

Remarks

The following preconditions must be met:

= You must first open a database successfully using PvOpenDatabase() as user ‘Master'.

m The associated database has database-level security enabled.
= A user with the same name cannot already exist in the specified database.

The following post condition must be met:

m Use PvCloseDatabase() to free the resources.

S7

Distributed Tuning Interface Reference

See Also

PvAlterUserName()
PvAlterUserPassword()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvCreateGroup()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

58

DTI Function Definitions

PvDeleteDSN()
Deletes a data source name.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to work with client
DSNS.

Syntax

BTI API PvDeleteDSN(
BTI_LONG hConnection,
BTI CHAR PTR pdsnName) ;

Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In pdsnName DSN to delete.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer
P_E_DSN_DOES_NOT_EXIST The specified DSN name does not exist.
P_E_ACCESS_RIGHT Insufficient access right for the operation.
P_E_FAIL Failed to retrieve data path.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvModifyDSN()
PvGetDSN()

59

Distributed Tuning Interface Reference

PvGetDSNEX()
PvCreateDSN()
PvCountDSNs()
PvStop()

60

DTI Function Definitions

PvDeleteLicense()
Deletes (deauthorizes) the specified license from the computer indicated by the connection.
Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav80.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvDeleteLicense(
BTI_LONG hConnection,
BTI CHAR PTR licenses) ;

Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In licenses License to be deleted.

Return Values

P_OK The operation completed successfully

P_E_FAIL The operation did not complete successfully

P_E_LIC_NOT_FOUND The license specified is not currently authorized.

P_E_LIC_INVALID The license specified is invalid.

Status code pertaining to license | See Status Codes and Messages for License Administrator Status Codes and
administration or to authorization | Authorization Status Codes.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Example

BTI CHAR PTR delete lic = "ERXVD3U4ZS9KR94QPDHV5BN2";

status = PvDeleteLicense (P_LOCAL DB CONNECTION, delete lic);
See Also

PvAddLicense()

PvValidateLicenses()

PvGetProductsinfo()

61

Distributed Tuning Interface Reference

PvStop()
PvStart()

62

DTI Function Definitions

PvDisconnect()
Attempts to disconnect the connection established earlier by PvConnectServer function.
Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvDisconnect (
BTI_LONG hConnection);
Arguments
In hConnection Connection handle to be disconnected.Connection handles are obtained with the PvConnectServer()
function.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_FAIL Failed to disconnect to the named server.

Example

BTI SINT status = 0;

status = PvDisconnect (m_hConn) ;

See Also

PvStart()

PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeCommsStat()
PvGetMkdeUsage()
PvGetOpenFilesData()
PvFreeOpenFilesData()
PvDisconnectMkdeClient()
PvDisconnectSQLConnection()
PvStop()

63

Distributed Tuning Interface Reference

PvDisconnectMkdeClient()

Attempts to disconnect an active MicroKernel Engine client by specifying a client ID. In order to obtain
avalid client ID, use PvGetMkdeClientData and PvGetMkdeClientld functions.

Header File: monitor.h (See also Header Files)
Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also L

Syntax

BTI SINT PvDisc

ink Libraries)

onnectMkdeClient (

BTI LONG hConnection,
PVCLIENTID* pClientld) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In pClientld Address of the PVCLIENTID structure to identify the MicroKernel Engine client.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_CLIENT Invalid client ID.
P_E_FAIL Failed to disconnect to the named server.

Example

unsigned long c

// This sample
BTI SINT status
PVCLIENTID clie
status = PvGet

while (count >

{

ount = 0;

disconnects all active Mkde connections
=0

ntId;

MkdeClientsData (connection, &count);

0)

status = PvGetMkdeClientId(connection, 0, &client Id);

status = PvDisconnectMkdeClient (connection, &clientId);
status = PvGetMkdeClientsData (connection, &count)
}

PvFreeMkdeClientsData (connection) ;

64

DTI Function Definitions

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()

PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientld()
PvGetMkdeClientInfo()
PvGetMkdeClientHandlesData()
PvDisconnect()

PvStop()

65

Distributed Tuning Interface Reference

PvDisconnectSQLConnection()

Attempts to disconnect an active SQL connection by passing SQL connection Id. Use
PvGetSQLConnectionsData and PvSQLConnectioninfo to obtain a valid connection Id.

Note Each SQL connection also establishes a MicroKernel Engine connection. Use
PvDisconnectMKDECIient to kill those connections.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsgldti.so (Linux), libpsqldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvDisconnectSQLConnection (
BTI LONG hConnection,
PVSQLCONNID* pSQLConnld);
Arguments
In hConnection Server connection handle that contains the SQL connection to be disconnected. Server connection

handles are obtained with the PvConnectServer() function.

In pSQLConnld Address of the PVSQLCONNID structure to identify the SQL connection. SQL connections are
obtained with the PvGetSQLConnectionsData()

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_CLIENT Invalid client ID.
P_E_FAIL Failed to disconnect to the named server.

Example

BTI SINT status = 0;

PVSQLCONNINFO connectionInfo;

PVSQLCONNID connld;

status = PvGetSQLConnectionsData (connection, &count);

while (count > 0)

{
status = PvGetSQLConnectionInfo (connection, O,
&connectionInfo) ;
connId.ul32ProcessId =
connectionInfo.ul32ProcessId;

66

DTI Function Definitions

connId.ul32ThreadId =
connectionInfo.ul32ThreadId;

status = PvDisconnectSQLConnection (connection,
&connId) ;

status = PvGetSQLConnectionsData (connection,
&count) ;

}

PvFreeSQLConnectionsData (connection, &count);

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetSQLConnectionlInfo()
PvDisconnect()

PvStop()

67

Distributed Tuning Interface Reference

PvDropDatabase()
Deletes a specified entry from dnames.cfg.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvDropDatabase (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI CHAR option) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server is obtained with the
PvGetDbNamesData() function. A single database name from the resulting list can be obtained with
the PvGetDbName() function.

In option Bit mask that specifies options. Set the low-order bit to one (0001h) if you want DDF files to be
deleted in addition to the database name. Otherwise, only the database name will be deleted but DDF
files will remain.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer
P_E_ACCESS_RIGHT Insufficient access right for the operation
P_E NOT_EXIST Named database does not exist.
P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()

68

DTI Function Definitions

PvCreateDatabase()
PvModifyDatabase()
PvDisconnect()
PvStop()

69

Distributed Tuning Interface Reference

PvDropGroup()
Drop an existing group from the database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvDropGroup (
BTI_WORD dbHandle,
const BTI CHAR* group) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In group Database group name.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errinvalidAccountName The specified group name does not exist.

PCM_errDatabaseHasNoSecurity | Database has no security

PCM_errSessionSecurityError Database opened with insufficient privilege

PCM_errGroupNotEmpty An user is associated with this group

Remarks
The following preconditions must be met:

= You must first open a database successfully using PvOpenDatabase() as user ‘Master'.
= The associated database has database-level security enabled.

= The group must already exist in the specified database.

= The group cannot contain any members.

The following post condition must be met:

= Use PvCloseDatabase() to free the resources.

See Also

PvCreateGroup()
PvAddUserToGroup()
PvRemoveUserFromGroup()
PvDropUser()

70

DTI Function Definitions

PvOpenDatabase()
PvCloseDatabase()

71

Distributed Tuning Interface Reference

PvDropindex()
Drops the index from dictionary and data files, given the index number.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvDropIndex (
WORD dictHandle,
LPCSTR tableName,
WORD indexNumber,
BOOL renumber) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of the table with the index to be dropped.
In indexNumber Number of the index to be dropped.
In renumber Indicates whether the remaining indexes should be renumbered.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errinvalidDictionaryHandle | The specified dictionary handle does not exist.

PCM_errTableNotFound The specified table was not found.

PCM_errinvalidindex The specified index was not found.

Remarks
You must first open a dictionary successfully using PvOpenDatabase().

The table specified by tableName must exist in the dictionary specified by dictHandle.

See Also

PvStart()
PvOpenDatabase()
PvDropIindexByName()
PvAddindex()
PvCloseDictionary()
PvStop()

72

PvDropindexByName()

DTI Function Definitions

Drops the index from dictionary and data files, given a name.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also Link Libraries)

Syntax
PRESULT PvDropIndexByName (
WORD dictHandle,
LPCSTR tableName,
LPCSTR indexName) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of the table with the index to be dropped.
In indexName Name of the index to be dropped.
Return Values

PCM_Success

The operation was successful.

PCM_errFailed

The operation was not successful.

PCM_errinvalidDictionaryHandle

The specified dictionary handle does not exist.

PCM_errTableNotFound

The table specified in tableName was not found in the dictionary.

Remarks

You must first open a dictionary successfully using PvOpenDatabase().

The table specified by tableName must exist in the dictionary specified by dictHandle.

See Also

PvStart()
PvOpenDatabase()

PvAddin

dex()

PvDroplndex()
PvCloseDictionary()

PvStop()

73

Distributed Tuning Interface Reference

PvDropTable()
Drops the specified table from the open dictionary specified by the dictionary handle.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvDropTable (
WORD dictHandle,
LPCSTR tableName,
WORD keepFile) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
In tableName Name of the table to delete.
In keepFile Indicates whether or not the data file will be deleted. If set to 0, the data file associated with the table
will be deleted. If non-zero, the data file will not be deleted.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

PCM_errinvalidDictionaryHandle | The specified dictionary handle does not exist.

PCM_errTableNotFound The specified table name was not found.

Remarks
You must first open a dictionary successfully using PvOpenDatabase().

The table specified by tableName must exist in the dictionary specified by dictHandle.

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvGetTable()
PvAddTable()
PvCloseDictionary()
PvStop()

74

DTI Function Definitions

PvDropUser()
Drop an existing user from the database.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvDropUser (
BTI_WORD dbHandle,
const BTI_CHAR* user) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errinvalidAccountName The specified account or user name does not exist.

PCM_errNotAllowedToDropAdministrator | Attempt to drop Master user.

PCM_errDatabaseHasNoSecurity Database has no security.
PCM_errSessionSecurityError Database opened with insufficient privilege.
Remarks

The following preconditions must be met:

= You must first open a database successfully using PvOpenDatabase() as user ‘Master'.
= The associated database has database-level security enabled.
= A user with the same name must already exist in the specified database.

The following post condition must be met:

m Use PvCloseDatabase() to free the resources.

See Also

PvAddUserToGroup()
PvAlterUserName()
PvAlterUserPassword()
PvCreateUser()
PvRemoveUserFromGroup()

75

Distributed Tuning Interface Reference

PvOpenDatabase()
PvCloseDatabase()

76

DTI Function Definitions

PvFreeDbNamesData()

Free the resource allocated for database names on a connected server. This function needs to be called
after preceding calls to PvGetDbNamesData.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvFreeDbNamesData (
BTI LONG hConnection);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to database names not available.

P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Database names data retrieved by calling PvGetDbNamesData().

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvDisconnect()
PvStop()

77

Distributed Tuning Interface Reference

PvFreeMkdeClientsData()

Free the cached information related to the active MicroKernel Engine clients. This function needs to be
called after preceding calls to PvGetMkdeClientsData.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvFreeMkdeClientsData (
BTI LONG hConnection);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_FAIL Failed to disconnect to the named server.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for active clients retrieved by calling PvGetMkdeClientsData();

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientinfo()
PvDisconnect()

PvStop()

78

DTI Function Definitions

PvFreeOpenFilesData()

Free the cached information related to the open files. This function needs to be called after preceding
calls to PvGetOpenFilesData.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvFreeOpenFilesData (
BTI LONG hConnection);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_FAIL Failed to disconnect to the named server.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for open files retrieved by calling PvGetOpenFilesData().

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvGetOpenFileName()
PvDisconnect()
PvStop()

79

Distributed Tuning Interface Reference

PvFreeSQLConnectionsData()

Free the cached information related to SQL connections. This function needs to be called after preceding
calls to PvGetSQLConnectionsData.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvFreeSQLConnectionsData (
BTI LONG hConnection);
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_FAIL Failed to disconnect to the named server.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for open files retrieved by calling PvGetSQLConnectionsData().

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetSQLConnectioninfo()
PvDisconnect()

PvStop()

80

DTI Function Definitions

PvFreeTable()
Frees memory allocated by a PvGetTable() function call.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvFreeTable (
TABLEINFO* tableProps,
COLUMNMAP* columnList,
INDEXMAP* indexList) ;
Arguments
In/Out tableProps Pointer to a structure containing table information
In/Out columnList Pointer to an array of columns defined in the table.
In/Out indexList Pointer to an array of segments defined in the table.

Return Values

PCM_Success The operation was successful.

PCM_errFailed A general failure occurred

Remarks

This function frees the structures created during a PvGetTable() call.

Example

PRESULT status = 0;
status = PvFreeTable (mytableProps, MyColumnList MyindexList);

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvGetTable()
PvFreeTableNames()
PvCloseDictionary()
PvStop()

81

Distributed Tuning Interface Reference

PvFreeTableNames()
Frees memory allocated with a PvGetTableNames() call.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvFreeTableNames (
TABLEMAP* tableList) ;
Arguments
In/Out tableList Array of TABLEMAP structures that contain table names.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.

Remarks

The memory freed with this function is successfully allocated during a PvGetTableNames() call to
retrieve all of the table names for a specified dictionary.

Example

PRESULT status = 0;
status = PvFreeTableNames (&mytablelist) ;

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvGetTable()
PvFreeTable()
PvCloseDictionary()
PvStop()

82

DTI Function Definitions

PvGetAllPossibleSelections()

Retrieves all available selection choices for a setting of types (PVSETTING_SINGLE_SEL or
PVSETTING_MULTI_SEL).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetAllPossibleSelections (
BTI LONG
BTI ULONG
BTI ULONG PTR
BTI ULONG PTR

Arguments

hConnection,
settinglD,
pNumltems,
pSelectionList) ;

hConnection

Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In/Out pNumltems Address of an unsigned long that receives the total number of selection items. You can also
retrieve the number of selection items by calling PvCountSelectionltems()

Out pSelectionList Array that contains all available selection choices.

Return Values

P_OK

The operation was successful.

P_E_INVALID_HANDLE

Invalid connection handle.

P_E_NULL_PTR

Call with NULL pointer

P_E_INVALID_DATA_TYPE

The requested setting is not of selection type.

P_E_BUFFER_TOO_SMALL The array size is too small. In this case, the required size is returned in pNumltems.

P_E_FAIL

Failed for other reasons.

Remarks

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local

machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()

PvConnectServer()

83

Distributed Tuning Interface Reference

PvGetCategoryList()
PvGetSettingList()
PvCountSelectionltems()
PvDisconnect()

PvStop()

84

DTI Function Definitions

PvGetBooleanStrings()
Retrieves display string related to Boolean type setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetBooleanStrings (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI LONG PTR trueStringSize,
BTI CHAR PTR trueString,
BTI LONG_PTR falseStringSize,
BTI CHAR PTR falseString) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

Out trueStringSize | Long integer containing the length of trueString.

Out trueString Display string for TRUE (size >= 16 bytes).

Out falseStringSize | Long integer containing the length of falseString.

Out falseString Display string for FALSE (size >= 16 bytes).

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA_TYPE The requested setting is not of long type.
P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

85

Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

86

DTI Function Definitions

PvGetBooleanValue()

Retrieves the value for a Boolean type setting. Either default or current value can be retrieved.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetBooleanValue (

BTI_LONG hConnection,
BTI ULONG settinglD,
BTI SINT PTR pValue,
BTI SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
Out pValue Address of a Boolean variable that receives the setting value.
In whichData Flag to indicate which value is requested:
PVDATA_DEFAULT returns default value.
PVDATA_CURRENT returns current value

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer

P_E_INVALID_DATA_TYPE The requested setting is not of Boolean type.

P_E_FAIL Failed for other reasons.

Remarks

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local

machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()

87

Distributed Tuning Interface Reference

PvGetSettingList()
PvGetBooleanStrings()
PvSetBooleanValue()
PvDisconnect()
PvStop()

88

DTI Function Definitions

PvGetCategoryinfo()
Retrieves information about a category of engine settings.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetCategoryInfo (
BTI_LONG hConnection,
BTI ULONG categorylD,
PVCATEGORYINFO* pCatinfo) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In categorylD Unique identifier for the category. You can obtain a list of identifiers via the
PvGetCategoryList() function.

Out pCatinfo Address of a PVCATEGORYINFO structure that will receive the category information.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

The number of settings returned in the PVCATEGORYINFO structure represents the total number of
settings for that category, both client and server. To get the applicable number of settings, call
PvGetSettingList(). If it is a remote connection, the server side settings are not applicable.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvDisconnect()
PvStop()

89

Distributed Tuning Interface Reference

PvGetCategoryList()

Retrieves the list of category IDs on the engine specified by the current connection.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetCategoryList (
BTI LONG
BTI ULONG PTR
BTI ULONG PTR

Arguments

hConnection,
pnumCategories,
pCategoriesList) ;

hConnection

Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In/Out pnumCategories | Address of an unsigned long containing the number of categories that can be returned in
pCategoriesList. You can also call PvGetCategoryListCount() to retrieve this value.
Out pCategoriesList Array containing the category IDs.

Return Values

Remarks

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer
P_E_FAIL Failed for other reasons.

P_E BUFFER_TOO_SMALL Array size is too small. The required size is returned

in pnumCategories.

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also
PvStart()

PvConnectServer()
PvGetCategorylnfo()
PvDisconnect()

PvStop()

90

DTI Function Definitions

PvGetCategoryListCount()

Retrieves the number of categories on the engine specified by the current connection. This number can

then be used to allocate an array to pass to PvGetCategoryList().
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetCategoryListCount (
BTI LONG hConnection,
BTI ULONG_ PTR pListCount) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pListCount Address of an unsigned long containing the number of categories.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer

P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategorylnfo()
PvDisconnect()
PvStop()

91

Distributed Tuning Interface Reference

PvGetDbCodePage()
Retrieves the code page associated with a named database.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvGetDbCodePage (
BTI_LONG hConnection,
BTI CHAR PTR dbName,

BTI LONG PTR pDbCodePage) ;

Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In dbName Name of the database. A list of all database names for a particular server is obtained with

the PvGetDbNamesData() function. A single database name from the resulting list can be
obtained with the PvGetDbName() function.

Out pDbCodePage | Code page of the database. A value of zero indicates the default code page on the server.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_NOT_EXIST Named database does not exist.
P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also
PvConnectServer()
PvCreateDatabase2()

PvCreateDSN2()
PvModifyDatabase2()

92

DTI Function Definitions

PvModifyDSN2()
PvGetDSNEX2()
PvStart()

93

Distributed Tuning Interface Reference

PvGetDbDataPath()

Retrieves the data path (where data files reside) of a named database. This information is stored in

dbnames.cfg.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvGetDbDataPath (

BTI LONG hConnection,

BTI CHAR PTR dbName,

BTI_ULONG_PTR pBufSize,

BTI CHAR PTR dataPath) ;
Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server is obtained with the
PvGetDbNamesData() function. A single database name from the resulting list can be obtained with
the PvGetDbName() function.

In/Out pBufSize Address of an unsigned long containing size of the buffer. Receives actual size of the path returned.

Out dataPath Contains the data path if successful, or empty string otherwise.

Return Values

P_OK

The operation was successful.

P_E_INVALID_HANDLE

Invalid connection handle.

P_E_NULL PTR

Call with NULL pointer

P_E_BUFFER_TOO_SMALL

The buffer is too small for the string. In this case, the required buffer size is returned in
pBufSize.

P_E_NOT_EXIST

Named database does not exist.

P_E_FAIL

Failed for other reasons.

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

94

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvGetDbDictionaryPath()
PvGetDbServerName()
PvDisconnect()

PvStop()

DTI Function Definitions

95

Distributed Tuning Interface Reference

PvGetDbDictionaryPath()
Retrieves the dictionary path (where DDF files reside) of a named database.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvGetDbDictionaryPath (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI_ULONG_PTR pBufSize,
BTI CHAR PTR dictPath) ;

Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server is obtained with the
PvGetDbNamesData() function. A single database name from the resulting list can be obtained
with the PvGetDbName() function.

In/Out pBufSize Address of an unsigned long containing size of the buffer. Receives actual size of the path returned.

Out dictPath Contains the dictionary path if successful, or empty string otherwise.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer

P_E_BUFFER_TOO_SMALL | The buffer is too small for the string. In this case, the required buffer size is returned in
pBufSize.

P_E_NOT_EXIST Named database does not exist.

P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

96

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvGetDbDataPath()
PvGetDbServerName()
PvDisconnect()
PvStop()

DTI Function Definitions

97

Distributed Tuning Interface Reference

PvGetDbFlags()
Retrieves the database flags associated with a named database.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvGetDbFlags (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI ULONG PTR pDbFlags) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database. A list of all database names for a particular server is obtained with the
PvGetDbNamesData() function. A single database name from the resulting list can be obtained with
the PvGetDbName() function.

Out pDbFlags Database flags, which can be a combination of the P_DBFLAG__ constants.
P_DBFLAG_RI (integrity constraints, including referential integrity and triggers)

P_DBFLAG_BOUND (DDF files stamped with the database name so only that database can use
them)

P_DBFLAG_DBSEC_AUTHENTICATION (Mixed security policy. See Btrieve Security Policy.)
P_DBFLAG_DBSEC_AUTHORIZATION (Database security policy. See Btrieve Security Policy.)
P_DBFLAG_LONGMETADATA (see Metadata Version)

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer
P_E_NOT_EXIST Named database does not exist.
P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

98

Btrieve Security Policy

DTI Function Definitions

The following table indicates how to interpret the security model of an existing database.

This Flag Combination

Represents this Security Model

+ P_DBFLAG_DBSEC_AUTHORIZATION

No flags Classic
P_DBFLAG_DBSEC_AUTHENTICATION Mixed
P_DBFLAG_DBSEC_AUTHENTICATION Database

See Also

PvStart()
PvConnectServer()
PvCreateDatabase()
PvModifyDatabase()
PvGetDbNamesData()
PvGetDbName()
PvDisconnect()
PvStop()

99

Distributed Tuning Interface Reference

PvGetDbName()

Gets the name of a database on a connected server using a sequence number. You can obtain the number
of database names by calling the PvGetDbNamesData() function. The sequence number is 1 based.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvGetDbName (
BTI LONG hConnection,
BTI ULONG sequence,
BTI_ULONG_PTR pBufSize,
BTI CHAR PTR dbName) ;

Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In sequence The sequence number (1 based) of the database name. Must be within a valid range with upper
limit defined by PvGetDbNamesData().

In/Out pBufSize Address of an unsigned long containing size of buffer allocated to receive the database name.
Receives actual size of chars copied. The size should include the null terminator.

Out dbName String value returned.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_DATA_UNAVAILABLE Data related to database names not available.
P_E_NULL_PTR Call with NULL pointer

P_E BUFFER_TOO_SMALL Allocated buffer is too small for the string.
P_E_INVALID_SEQUENCE Sequence number is not valid.

P_E_FAIL Failed for other reasons.

100

DTI Function Definitions

Example

BTI ULONG i;
BTI ULONG count = 0;
BTI CHAR dbName [BDB7$IZE7DBNAME+1] ;
BTI SINT status = PvGetDbNamesData (connection, &count);
for (i=1; i<= count; 1i++)
{
BTI ULONG dbNameSize = sizeof (dbName) ;

status = PvGetDbName (connection, i, &dbNameSize, dbName) ;
}
status = PvFreeDbNamesData (connection);
Remarks

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= Database names data retrieved by calling PvGetDbNamesData()
m Caller has a valid database name sequence number.

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvFreeDbNamesData()
PvDisconnect()
PvStop()

101

Distributed Tuning Interface Reference

PvGetDbNamesData()

Retrieves the number of database names for a connected server. Use the PvGetDbName() function to
enumerate the names.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvGetDbNamesData (
BTI LONG hConnection,
BTI ULONG_ PTR pCount);

Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

Out pCount Address of an unsigned long to receive the number of database names on the server.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

This function should be called first before calling any other functions to get database names
information. The caller should call PvFreeDbNamesData() to free the resources allocated for database
names.

See Also

PvStart()
PvConnectServer()
PvGetDbName()
PvFreeDbNamesData()
PvDisconnect()
PvStop()

102

PvGetDbServerName()
Retrieves the name of the server where the named database resides.

Header File: catalog.h (See also Header Files)

DTI Function Definitions

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib

(OS X) (See also Link Libraries)

Syntax

BTI API PvGetDbServerName (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI_ULONG_PTR pBufSize,
BTI CHAR PTR serverName,
BTI SINT PIR plsLocal) ;

Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

the PvGetDbName() function.

In dbName Name of the database. A list of all database names for a particular server is obtained with the
PvGetDbNamesData() function. A single database name from the resulting list can be obtained with

In/Out pBufSize Address of an unsigned long containing the size of the buffer. Actual size of server name is returned.
Out serverName | Contains server name if successful, empty string otherwise.
Out plsLocal Returns zero for remote server, non-zero for local server.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer

P_E_BUFFER_TOO_SMALL | The buffer is too small for the string. In this case, the required buffer size is returned in
pBufSize.

P_E_NOT_EXIST Named database does not exist.

P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= DTl session started by calling PvStart().

= Connection established by PvConnectServer()or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

103

Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetDbNamesData()
PvGetDbName()
PvDisconnect()
PvStop()

104

DTI Function Definitions

PvGetDSN()
Retrieves information about the datasource name (DSN).
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to work with client
DSNS.

Syntax
BTI API PvGetDSN (
BTI_LONG hConnection,
BTI CHAR PTR dsnName,
BTI ULONG_ PTR pdsnDescSize,
BTI CHAR PTR dsnDesc,
BTI_ULONG_PTR pdsnDBQSize,
BTI CHAR PTR dsnDBQ) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dsnName Name of the datasource. A list of DSNs can be obtained with the PvListDSNs() function.

In/Out pdsnDescSize Address of an unsigned long containing size of the buffer for DSN description. Receives
actual size of DSN description.

Out dsnDesc Contains the description of DSN if successful.

In/Out pdsnDBQSize | Address of an unsigned long containing size of the buffer for name of database. Receives
actual size of database name.

Out dsnDBQ Contains the name of the database if successful.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer

P_E_BUFFER_TOO_SMALL The buffer is too small for the string. In this case, the required buffer size is returned in
pdsnDescSize or pdsnDBQSize.

P_E_FAIL Failed to retrieve data path.

105

Distributed Tuning Interface Reference

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

To retrieve information about a DSN without having to prompt the user to login, pass empty strings for
username and password when establishing the server connection with PvConnectServer().

Note The connection established by passing empty strings for username and password is an insecure
connection, and will not have sufficient rights to perform most of the other operations in DTI.

See Also

PvStart()
PvConnectServer()
PvGetDSNEX()
PvListDSNs()
PvCountDSNs()
PvCreateDSN()
PvModifyDSN()
PvDeleteDSN()
PvDisconnect()
PvStop()

106

DTI Function Definitions

PvGetDSNEX()

Retrieves information about the datasource name (DSN). This function is identical to PvGetDSN()
except that the DSN open mode is also retrieved.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to work with client
DSNs.

Syntax

BTI API PvGetDSNEX (
BTI LONG hConnection,
BTI CHAR PTR dsnName,
BTI ULONG_ PTR pdsnDescSize,
BTI CHAR PTR dsnDesc,
BTI_ULONG_PTR pdsnDBQSize,
BTI_CHAR PTR dsnDBQ,
BTI LONG PTR pOpenMode) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dsnName Name of the datasource. A list of DSNs can be obtained with the PvListDSNs() function.

In/Out pdsnDescSize Address of an unsigned long containing size of the buffer for DSN description. Receives actual
size of DSN description.

Out dsnDesc Contains the description of DSN if successful.

In/Out pdsnDBQSize | Address of an unsigned long containing size of the buffer for name of database. Receives actual
size of database name.

Out dsnDBQ Contains the name of the database if successful.

Out pOpenMode Contains open mode of DSN, which is one of the following:
+ NORMAL_MODE

+ ACCELERATED_MODE,

+ READONLY_MODE

+ EXCLUSIVE_MODE

See also DSN Open Mode in ODBC Guide.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer

107

Distributed Tuning Interface Reference

P_E_BUFFER_TOO_SMALL The buffer is too small for the string. In this case, the required buffer size is returned in
pdsnDescSize or pdsnDBQSize.

P_E_ACCESS_RIGHT Insufficient access right for the operation.

P_E _DSN_DOES_NOT_EXIST The specified DSN does not exist.

P_E_INVALID_OPEN_MODE Invalid open mode.
P_E_FAIL Failed to retrieve data path.
Remarks

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

To retrieve information about a DSN without having to prompt the user to login, pass empty strings for
username and password when establishing the server connection with PvConnectServer().

Note The connection established by passing empty strings for username and password is an insecure
connection, and will not have sufficient rights to perform most of the other operations in DTI.

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvCountDSNs()
PvGetDSN()
PvCreateDSN()
PvModifyDSN()
PvDeleteDSN()
PvDisconnect()
PvStop()

108

PvGetDSNEX2()

Retrieves information about the data source name (DSN). This function is the same as PvGetDSNEXx()
except that the encoding option for data is also retrieved.

DTI Function Definitions

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to work with client

DSNs.

Syntax

BTI_API PvGetDSNEx2 (
BTI_ LONG

BTI CHAR PTR
BTI ULONG_PTR
BTI CHAR PTR
BTI ULONG_PTR
BTI CHAR_PTR
BTI LONG_PTR
BTI LONG_PTR

Arguments

hConnection,
dsnName,
pdsnDescSize,
dsnDesc,
pdsnDBQSize,
dsnDBQ,
pOpenMode,
translate) ;

hConnection

Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In dsnName Name of the datasource. A list of DSNs can be obtained with the PvListDSNs() function.
In/Out pdsnDescSize Address of an unsigned long containing size of the buffer for DSN description. Receives
actual size of DSN description.
Out dsnDesc Contains the description of DSN if successful.
In/Out pdsnDBQSize | Address of an unsigned long containing size of the buffer for name of database. Receives
actual size of database name.
Out dsnDBQ Contains the name of the database if successful.
Out pOpenMode Open mode for the DSN, which is one of the following:
+ NORMAL_MODE
*+ ACCELERATED_MODE
+ READONLY_MODE
+ EXCLUSIVE_MODE
See also DSN Open Mode in ODBC Guide.
Out translate Encoding option for data, which can be one of the following:

» DSNFLAG_DEFAULT
* DSNFLAG_OEMANSI
* DSNFLAG_AUTO

See also DSN Open Mode in ODBC Guide. Note that DSNFLAG_DEFAULT corresponds
to the “None” encoding option in ODBC Administrator.

109

Distributed Tuning Interface Reference

Return Values

P_OK

The operation was successful.

P_E_INVALID_HANDLE

Invalid connection handle.

P_E_NULL PTR

Call with NULL pointer

P_E_BUFFER_TOO_SMALL

The buffer is too small for the string. In this case, the required buffer size is returned
in pdsnDescSize or pdsnDBQSize.

P_E_ACCESS_RIGHT

Insufficient access right for the operation.

P_E_DSN_DOES_NOT_EXIST

The specified DSN does not exist.

P_E_INVALID_OPEN_MODE

Invalid open mode.

P_E_INVALID_TRANSLATE_OPTION

The specified encoding translation option is invalid.

P_E_FAIL

Failed to retrieve data path.

Remarks

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

To retrieve information about a DSN without having to prompt the user to login, pass empty strings for
username and password when establishing the server connection with PvConnectServer().

Note The connection established by passing empty strings for username and password is an insecure
connection, and will not have sufficient rights to perform most of the other operations in DTI.

See Also
PvConnectServer()
PvCountDSNs()
PvCreateDSN2()
PvDeleteDSN()
PvDisconnect()
PvGetDSNEX()
PvListDSNs()
PvModifyDSN2()
PvStart()
PvStop()

110

DTI Function Definitions

PvGetEnginelnformation()
Retrieves the information about the database engine for a given hConnection.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvGetEngineInformation (
BTI_LONG hConnection,
BTI CHAR PTR pserverClient,
BTI_ULONG_PTR pdbuApi\Ver,
BTI ULONG PTR pmajor,
BTI ULONG PTR pminor,
BTI ULONG PTR pserverClientType) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pserverClient Address of a BTI_CHAR_PTR

True - MKDE_SERVR_ENGINE_CID
False - MKDE_CLNT_ENGINE_CID

Out pdbuApiVer Version of the structures. Can be NULL
Out pmajor Major version - can be NULL.
Out pminor Minor version - can be NULL.

Out pserverClientType Only for MKDE_SRVR_ENGINE_CID.
Returns one of the following:

UNKNOWN_ENGINE_CLIENT (0)
NT_SERVER (1)

WIN32_CLIENT (3)
UNIX_SERVER (4)
CLIENT_CACHE (5)
VXWIN_SERVER(6)
VXLINUX_SERVER(7)

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_FAIL Failed for other reasons.

111

Distributed Tuning Interface Reference

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvDisconnect()
PvStop()

112

PvGetError()

Returns an error description string, describing the preceding error. This function is only for errors

DTI Function Definitions

encountered in catalog functions.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvGetError (
LPSTR errorDesc,
WORD* size) ;
Arguments
In/Out errorDesc | String that will contain the error description.
In/Out size Size of errorDesc. If the size is not large enough to contain the error description, an error is
returned and the required size is contained in size.

Return Values

PCM_Success

The operation was successful.

PCM_errString

TooShort

The size parameter was not large enough to contain the error description. The required
length is returned in the size argument.

Remarks

The errorDesc string is allocated by the caller.

The maximum size of the error description is specified in the constant Error_1EN found in the header

file ddf.h.

See Also

PvStart()
PvStop()

113

Distributed Tuning Interface Reference

PvGetFileHandlesData()
Retrieves all the file handle information related to an open file.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetFileHandlesData (
BTI_LONG hConnection,
BTI_CHAR PTR fileName,
BTI ULONG PTR pCount);
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In fileName Full path name of the file to be queried.

Out pCount Address of an unsigned long to receive the number of handles for the open file.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE Data related to active clients not available.

P_E_NULL_PTR Call with NULL pointer.

P_E_FILE_NOT_OPEN Specified file is not currently open.

P_E_FAIL Failed to disconnect to the named server.
Remarks

The information will be cached by DTI for subsequent calls related to file handles. This function would
be called first for an open file before calling any other functions to get file handle information. The
cached information for the file handles will be freed when PvFreeOpenFilesData() is called.

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for open files retrieved by calling PvGetOpenFilesData()
m Caller already has a valid open file name.

114

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvFreeOpenFilesData()
PvDisconnect()
PvStop()

DTI Function Definitions

115

Distributed Tuning Interface Reference

PvGetFileHandlelnfo()
Query the information for a file handle associated with an open file.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetFileHandleInfo (
BTI_LONG hConnection,
BTI_CHAR PTR fileName,
BTI_ULONG sequence,
PVFILEHDLINFO* pFileHdlInfo);
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In fileName Full path name of the file to be queried.

In sequence The sequence number (zero-based) of the file handle. Must be within a valid range with
upper limit defined by the number of file handles obtained by PvGetFileHandlesData().

Out pFileHdlInfo | Address of a PVFILEHDLINFO structure to receive the information on the file handle.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_NULL_PTR Call with NULL pointer

P_E_INVALID_SEQUENCE | Sequence number is not valid

P_E_FILE_NOT_OPEN Specified file is not currently open.

P_E_FAIL Failed to disconnect to the named server.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for open files retrieved by calling PvGetOpenFilesData()
= Data for open file handles retrieved by calling PvGetFileHandlesData();

116

m Caller already has a valid open file name.

= Caller already has a valid file handle sequence.

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvGetFileHandlesData()
PvGetOpenFileName()
PvFreeOpenFilesData()
PvDisconnect()
PvStop()

DTI Function Definitions

117

Distributed Tuning Interface Reference

PvGetFilelnfo()
Query the information for an open file.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetFileInfo (
BTI_LONG hConnection,
BTI_CHAR PTR fileName,
PVFILEINFO* pFilelnfo) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In fileName Full path name of the file to be queried.

Out pFilelnfo Address of a PVFILEINFO structure to receive the information on the file.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_NULL_PTR Call with NULL pointer
P_E_FILE_NOT_OPEN Specified file is not currently open.
P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

n Data for open files retrieved by calling PvGetOpenFilesData();

m Caller already has a valid open file name.

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()

118

DTI Function Definitions

PvDisconnect()
PvStop()

119

Distributed Tuning Interface Reference

PvGetLongValue()
Retrieves the value for a long integer type setting, from the data source specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetLongValue (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI LONG PTR pValue,
BTI SINT whichData) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
Out pValue Address of a long integer variable that receives the setting value.
In whichData Flag to indicate which value is requested:

PVDATA_DEFAULT returns default value.
PVDATA_CURRENT returns current value

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer

P_E_INVALID_DATA_TYPE | The requested setting is not of long integer type.

P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

To obtain the minimum and maximum values that the setting can accept, use the PvGetValueLimit()
function.

120

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetValueLimit()
PvDisconnect()
PvStop()

DTI Function Definitions

121

Distributed Tuning Interface Reference

PvGetMkdeClientld()
Get the client ID of an active MicroKernel Engine client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetMkdeClientId (
BTI_LONG hConnection,
BTI_ULONG sequence,
PVCLIENTID* pClientld);
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In sequence The sequence number (zero based) of the MicroKernel Engine client. Must be within a
valid range with upper limit returned by PvGetMkdeClientsData().

Out pClientld Address of the PVCLIENTID structure to hold the returned client ID information.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_NULL_PTR Call with NULL pointer.

P_E_INVALID_SEQUENCE | Sequence number is not valid.

P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for active clients retrieved by calling PvGetMkdeClientsData()

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()

122

DTI Function Definitions

PvGetMkdeClientInfo()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

123

Distributed Tuning Interface Reference

PvGetMkdeClientinfo()
Query the information for an active MicroKernel Engine client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetMkdeClientInfo (
BTI_LONG hConnection,
PVCLIENTID* pClientld,

PVMKDECLIENTINFO* pClientinfo) ;

Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In pClientld Address of the PVCLIENTID structure to identify the MicroKernel Engine client.

Out PClientInfo Address of a PYMKDECLIENTINFO structure to receive the information for the
MicroKernel Engine client.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to active clients not available.

P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_CLIENT Invalid client ID.
P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for active clients retrieved by calling PvGetMkdeClientsData().
= Caller already has a valid active MicroKernel Engine client ID.

See Also

PvStart()
PvConnectServer()

124

PvGetMkdeClientsData()
PvGetMkdeClientld()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

DTI Function Definitions

125

Distributed Tuning Interface Reference

PvGetMkdeClientHandlesData()
Retrieves the number of MicroKernel Engine client handles related to an active client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetMkdeClientHandlesData (
BTI_LONG hConnection,
PVCLIENTID* pClientld,
BTI ULONG PTR pCount) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In pClientld Address of the PVCLIENTID structure to identify the MicroKernel Engine client.
Out pCount Address of an unsigned long to receive the number of handles for the MicroKernel Engine
client.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_DATA_UNAVAILABLE | Data related to MicroKernel Engine clients not

available.
P_E_NULL_PTR Call with NULL pointer.
P_E_FAIL Failed for other reasons.

Remarks

When you call this function, all information regarding MicroKernel Engine client handles is cached by
DTI for subsequent function calls related to client handles. If you want to obtain other information
about clients, see PvGetMkdeClientsData().

This function should be called first before calling any other functions that return client handle
information.

The cached information for the MicroKernel Engine client handles will be freed along with the
information about the clients when PvFreeMkdeClientsData() is called.

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

126

DTI Function Definitions

m Data for active clients retrieved by calling PvGetMkdeClientsData().
= Caller already has a valid active MicroKernel Engine client ID.

See Also

PvStart()
PvConnectServer()
PvGetMkdeClientsData()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

127

Distributed Tuning Interface Reference

PvGetMkdeClientHandlelnfo()
Query the information for a MicroKernel Engine client handle associated with an active client.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetMkdeClientHandleInfo (
BTI_LONG hConnection,
PVCLIENTID* pClientld,
BTI ULONG sequence,

PVMKDECLIENTHDLINFO* pClientHdlInfo) ;

Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In pClientld Address of the PVCLIENTID structure to identify the MicroKernel Engine client.
In sequence The sequence number (zero based) of the client handle. Must be within a valid range with

upper limit defined by the number of handles obtained by PvGetMkdeClientHandlesData().

Out pClientHdlInfo | Address of a PVYMKDECLIENTHDLINFO structure to receive the information on the client

handle.

Return Values
P_OK The operation was successful.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_INVALID_CLIENT Invalid client ID.
P_E_INVALID SEQUENCE Sequence number is not valid.
P_E_FAIL Failed to disconnect to the named server.
P_E_DATA_UNAVAILABLE Data related to active clients not available.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for active MicroKernel Engine clients retrieved by calling PvGetMkdeClientsData();

= Data for MicroKernel Engine client handles retrieved by calling PvGetMkdeClientHandlesData();

m Caller already has a valid active MicroKernel Engine client ID.

128

DTI Function Definitions

m Caller already has a valid handle sequence for the active MicroKernel Engine client.

See Also

PvStart()

PvConnectServer()
PvGetMkdeClientsData()
PvGetMkdeClientHandlesData()
PvFreeMkdeClientsData()
PvDisconnect()

PvStop()

129

Distributed Tuning Interface Reference

PvGetMkdeClientsData()
Retrieves all the information related to the active MicroKernel Engine clients.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetMkdeClientsData (
BTI_LONG hConnection,
BTI ULONG PTR pCount);
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pCount Address of an unsigned long to receive the number of active MicroKernel Engine clients.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

Remarks

When you call this function, all information regarding MicroKernel Engine clients is cached by DTI for
subsequent function calls related to clients. The one exception is information regarding client handles,
which is cached using a similar function PvGetMkdeClientHandlesData().

This function should be called first before calling any other functions that return client information. The
caller should call PvFreeMkdeClientsData() to free the cached information when it is no longer needed.

This function can also be called to refresh the cached information.
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()

PvConnectServer()
PvFreeMkdeClientsData()
PvGetMkdeClientHandlesData()

130

DTI Function Definitions

PvDisconnect()
PvStop()

131

Distributed Tuning Interface Reference

PvGetMkdeCommStat()
Retrieves all the MicroKernel Engine communication statistics data.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetMkdeCommStat (
BTI_LONG hConnection,
PVCOMMSTAT* pCommStat) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pCommStat | Address of a PVCOMMSTAT structure to receive the MicroKernel Engine communication
statistics.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_COMPONENT_NOT_LOADED | Component is not loaded

P_E_NULL PTR Call with NULL pointer.

P_E_FAIL Failed to disconnect to the named server.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for open files retrieved by calling PvGetSQLConnectionsData()

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetMkdeUsage()
PvFreeSQLConnectionsData()
PvDisconnect()

PvStop()

132

DTI Function Definitions

PvGetMkdeCommStatEx()
Retrieves all the MicroKernel Engine communication statistics data.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetMkdeCommStatEx (
BTI_LONG hConnection,
PVCOMMSTATEX* pCommStatEx) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pCommStatEx | Address of a PVCOMMSTATEX structure to receive the MicroKernel Engine
communication statistics.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_COMPONENT_NOT_LOADED | Component is not loaded

P_E_NULL PTR Call with NULL pointer.

P_E_FAIL Failed to disconnect to the named server.

Remarks

This function returns the same data as PvGetMkdeCommStat but uses a new structure
PVCOMMSTATEX that contains two additional elements. The added elements (total Timeouts and
totalRecoveries) are related to the PSQL Auto Reconnect (PARC) feature. See Advanced Operations Guide
for more information on PARC.

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Data for open files retrieved by calling PvGetSQLConnectionsData()

See Also

PvStart()

PvConnectServer()
PvGetSQLConnectionsData()
PvGetMkdeUsage()

133

Distributed Tuning Interface Reference

PvFreeSQLConnectionsData()
PvDisconnect()
PvStop()

134

DTI Function Definitions

PvGetMkdeUsage()

Retrieves the resource usage information from the MicroKernel Engine, including current, peak, and
maximum settings for licenses, files, handles, transactions, clients, threads, and locks.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetMkdeUsage (
BTI LONG
PVMKDEUSAGE*

Arguments

hConnection,
pMkdeUsage) ;

hConnection

Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

Out

pMkdeUsage

Address of a PYMKDEUSAGE structure to receive the MicroKernel Engine resource
usage information.

Return Values

Remarks

P_OK

The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also
PvStart()

PvConnectServer()
PvGetMkdeCommStat()
PvGetMkdeUsageEx()
PvDisconnect()

PvStop()

135

Distributed Tuning Interface Reference

PvGetMkdeUsageEXx()

Retrieves the resource usage information from the MicroKernel Engine database engine, including
current, peak, and maximum settings for use count, session count, data in use, files, handles,
transactions, clients, threads, and locks, and the duration, in seconds, that the database engine has been
running (referred to as “engine uptime™).

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav78.dll (Windows), libpsgldti.so (Linux), libpsqldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetMkdeUsageEx (
BTI LONG hConnection,
PVMKDEUSAGEEX* pMkdeUsage) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pMkdeUsage | Address of a PYMKDEUSAGEEX structure to receive the MicroKernel Engine resource
usage information.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

Remarks

This function, PvGetMkdeUsageEXx(), is similar to PvGetMkdeUsage(); the only difference is in the
structures. While supplying the same elements, PVMKDEUSAGEEX supplies four-byte elements when
PVMKDEUSAGE supplies two-byte ones.

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetMkdeCommsStat()
PvGetMkdeUsage()

136

DTI Function Definitions

PvDisconnect()
PvStop()

137

Distributed Tuning Interface Reference

PvGetMkdeVersion()
Retrieves the MicroKernel Engine version information.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetMkdeVersion (
BTI_LONG hConnection,
PVVERSION* pMkdeVersion) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pMkdeVersion | Address of a PVVERSION structure to receive the MicroKernel Engine version

information.
Return Values
P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.

P_E_COMPONENT_NOT_LOADED Component not loaded.

P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetMkdeCommStat()
PvGetMkdeUsageEx()
PvDisconnect()
PvStop()

138

DTI Function Definitions

PvGetOpenFilesData()

Retrieves all the information related to the open files.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetOpenFilesData (
BTI LONG
BTI ULONG PTR

Arguments

hConnection,
pCount) ;

hConnection

Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

Out

pCount

Address of an unsigned long to receive the number of open files.

Return Values

Remarks

P_OK

The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

The information will be cached by DTI for subsequent calls related to open files. This function should
be called first before calling any other functions to get open file information.

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

The following post condition must be met:

m The caller should call PvFreeOpenFilesData() to free the cached information when it is no longer

needed.

See Also

PvStart()

PvConnectServer()
PvGetOpenFileName()

PvFreeOpenFilesData()

139

Distributed Tuning Interface Reference

PvDisconnect()
PvStop()

140

DTI Function Definitions

PvGetOpenFileName()

Retrieves the full path name of an open file.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetOpenFileName (

BTI_LONG hConnection,
BTI ULONG sequence,
BTI_ULONG_PTR pBufSize,
BTI CHAR PTR fileName) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In sequence The sequence number (zero based) of the file. Must be within a valid range with upper limit

returned by PvGetOpenFilesData().

In/Out pBufSize

Address of an unsigned long containing size of buffer allocated to receive the file name.
Receives actual size of chars copied. The size should include the null terminator.

In/Out fileName

String value returned.

Return Values

P_OK

The operation was successful.

P_E_INVALID_HANDLE

Invalid connection handle.

P_E_DATA_UNAVAILABLE

Data related to active clients not available.

P_E_NULL PTR

Call with NULL pointer.

P_E_BUFFER_TOO_SMALL

Allocated buffer is too small for the string, returned string is truncated. In this case the
required size is in pBufSize.

P_E_INVALID_SEQUENCE

Sequence number is not valid.

P_E FAIL

Failed to disconnect to the named server.

Remarks

The following preconditions must be met:

Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Data for open files retrieved by calling PvGetOpenFilesData().

141

Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetOpenFilesData()
PvFreeOpenFilesData()
PvDisconnect()
PvStop()

142

DTI Function Definitions

PvGetProductsinfo()
Retrieves xml string with information on all PSQL products found by the License Manager.
Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvGetProductsInfo (
BTI_LONG hConnection,
BTI CHAR PTR productinfo,
BTI_ULONG_PTR pBufSize);
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to receive the string. It
receives the actual length of selection string.

Out productinfo | XML string returned with product information.

Return Values

DBU_SUCCESS The operation was successful.
P_E_FAIL Failed for other reasons.
Status code pertaining to license administration or to See Status Codes and Messages for License Administrator
authorization Status Codes and Authorization Status Codes.
Remarks
Preconditions

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Product Information Returned by PvGetProductsinfo()

Following is the document type definition (DTD) for the XML string returned by
PvGetProductsInfo () and an explanation of its terms:

<!DOCTYPE products [

<!ELEMENT products (product*)>

<!ELEMENT product (name,id,licenses)>
<!ELEMENT name (#PCDATA)>

143

Distributed Tuning Interface Reference

<!ELEMENT id (#PCDATA)>

<!ELEMENT licenses (license*)>

<!ELEMENT license
(type,productCode*,productKey*, state*, feature*,edition*, maxUserCount*, maxSession
Count*,maxDataInUseGB*,platform*, sequence*,userCount*, sessionCount*,datalInUseGB*
,timeStamp*, oemId*, application*,description*, isremovable*,gracePeriodEnd*) >

<!ELEMENT type (#PCDATA)>

<!ELEMENT productCode (#PCDATA)>

<!ELEMENT productKey (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT feature (#PCDATA)>

<!ELEMENT edition (#PCDATA) >

<!ELEMENT maxUserCount (#PCDATA)>

<!ELEMENT maxSessionCount (#PCDATA)>

<!ELEMENT maxDataInUseGB (#PCDATA)>

<!ELEMENT platform (#PCDATA)>

<!ELEMENT sequence (#PCDATA)>

<!ELEMENT userCount (#PCDATA)>

<!ELEMENT sessionCount (#PCDATA)>

<!ELEMENT dataInUseGB (#PCDATA)>

<!ELEMENT timeStamp (#PCDATA)>

<!ELEMENT oemId (#PCDATA)>

<!ELEMENT application (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT isremovable (#PCDATA)>

<!ELEMENT gracePeriodEnd (#PCDATA)>

1>
products A container for all products returned by PvGetProductsinfo().
product A container for information about a single product
name The name of the product.
id The PSQL code for the product. Refer to dtilicense header file for the list of product codes returned.
licenses A container for all licenses that apply to the product.
license A container for information about a single license.
type The license type:
1: Permanent
2: Expiring license set at issue date
4: Expiring license applied at install time
7: User count increase
productCode The PSQL code for the product. Refer to dtilicense header file for the list of product codes returned.
productKey The key used for product authorization; can be empty if product authorization was not used.

144

DTI Function Definitions

state The current state of the license:
0: Active

1: Expired

2: Disabled

3: Inactive

4: Failed validation

feature Reserved.
edition Reserved.
maxUserCount Maximum concurrent users allowed. Zero indicates unlimited users on PSQL Server and Workgroup

editions. Not applicable on PSQL Vx Server edition and always returns “0”.

maxSessionCount Maximum concurrent sessions allowed. Zero indicates unlimited sessions on PSQL Vx Server edition.
Not applicable on PSQL Server and Workgroup editions and always returns “0”.

maxDatainUseGB Maximum amount of data allowed to be used simultaneously, measured in gigabytes. Zero indicates
unlimited amount of data on PSQL Vx Server edition. Not applicable on PSQL Server and Workgroup
editions and always returns “0”.

platform The supported platforms:
0: ANY

1: WIN

- WIN32

: WIN64

- LINUX

1 LINUX32

: LINUX64

MAC

: MAC32

: MAC64

sequence The license sequence number.

userCount The number of users permitted by the license. -1 indicates unlimited number of users on PSQL Server
and Workgroup editions. Not applicable on PSQL Vx Server edition and always returns “0”.

sessionCount The number of sessions permitted by the license. -1 indicates unlimited number of users on PSQL Vx
Server editions. Not applicable on PSQL Server and Workgroup editions and always returns “0”.

datalnUseGB The amount of data in use permitted by the license, measured in gigabytes. -1 indicates unlimited data
count size on PSQL Vx Server editions. Not applicable on PSQL Server and Workgroup editions and
always returns “0”.

timeStamp For temporary keys, the expiration day represented as the number of days from January 1, 2000.
oemld The vendor ID.

application The vendor’s application ID.

description Reserved.

145

Distributed Tuning Interface Reference

isremovable The license key is removable:
0: Not removable

1: Removable

gracePeriodEnd Number of days remaining before the engine is disabled for failing license validation. Empty if a failed-
validation period is not applicable to this product. -1 if a failed-validation period is applicable but not in
effect for this product.

Example

<?xml version="1.0" encoding='UCS-4"' ?>
<!DOCTYPE products [
<!ELEMENT products (product*)>
<!ELEMENT product (name,id,licenses)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT licenses (license*)>
<!ELEMENT license
(type, productCode*, productKey*, state*, feature*,edition*, maxUserCount*, maxSession
Count*,maxDataInUseGB*,platform*, sequence*,userCount*, sessionCount*,datalInUseGB*
,timeStamp*, oemId*, application*,description*, isremovable*,gracePeriodEnd*) >
<!ELEMENT type (#PCDATA)>
<!ELEMENT productCode (#PCDATA)>
<!ELEMENT productKey (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT feature (#PCDATA)>
<!ELEMENT edition (#PCDATA)>
<!ELEMENT maxUserCount (#PCDATA)>
<!ELEMENT maxSessionCount (#PCDATA)>
<!ELEMENT maxDataInUseGB (#PCDATA)>
<!ELEMENT platform (#PCDATA)>
<!ELEMENT sequence (#PCDATA)>
<!ELEMENT userCount (#PCDATA)>
<!ELEMENT sessionCount (#PCDATA)>
<!ELEMENT dataInUseGB (#PCDATA)>
<!ELEMENT timeStamp (#PCDATA)>
<!ELEMENT oemId (#PCDATA)>
<!ELEMENT application (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT isremovable (#PCDATA)>
<!ELEMENT gracePeriodEnd (#PCDATA)>
1>
<products>
<product>
<name>DataExchange 5 Server: Real-Time Backup</name>
<id>78</id>
<licenses>
<license>
<type>1</type>
<productCode>78</productCode>
<productKey> ABCDE-55555-FGHIJ-55555-KLMNO-55555</productKey>
<state>0</state>
<feature>0</feature>
<edition>0</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>0</maxSessionCount>
<maxDataInUseGB>0</maxDataInUseGB>

146

DTI Function Definitions

<platform>2</platform>
<sequence>0</sequence>
<userCount>1</userCount>
<sessionCount>0</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>0</timeStamp>
<oemId>0</oemId>
<application>0</application>
<description></description>
<isremovable>1</isremovable>
<gracePeriodEnd>-1</gracePeriodEnd>
</license>
</licenses>
</product>
<product>
<name>PSQL 12 Server</name>
<id>425</id>
<licenses>
<license>
<type>2</type>
<productCode>425</productCode>
<productKey></productKey>
<state>0</state>
<feature>0</feature>
<edition>0</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>0</maxSessionCount>
<maxDataInUseGB>0</maxDataInUseGB>
<platform>2</platform>
<sequence>0</sequence>
<userCount>10</userCount>
<sessionCount>0</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>4489</timeStamp>
<oemId>8</ocemId>
<application>604</application>
<description></description>
<isremovable>0</isremovable>
<gracePeriodEnd></gracePeriodEnd>
</license>
<license>
<type>4</type>
<productCode>425</productCode>
<productKey></productKey>
<state>0</state>
<feature>0</feature>
<edition>0</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>0</maxSessionCount>
<maxDataInUseGB>0</maxDataInUseGB>
<platform>1</platform>
<sequence>11200</sequence>
<userCount>20</userCount>
<sessionCount>0</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>4429</timeStamp>
<oemId>0</ocemId>
<application>1</application>
<description></description>

147

Distributed Tuning Interface Reference

<isremovable>0</isremovable>
<gracePeriodEnd></gracePeriodEnd>

</license>

<license>
<type>1</type>
<productCode>425</productCode>
<productKey>ABCDE-55555-FGHIJ-55555-KLMNO-55555</productKey>
<state>0</state>
<feature>0</feature>
<edition>0</edition>
<maxUserCount>0</maxUserCount>
<maxSessionCount>0</maxSessionCount>
<maxDatalInUseGB>0</maxDataInUseGB>
<platform>2</platform>
<sequence>0</sequence>
<userCount>10</userCount>
<sessionCount>0</sessionCount>
<dataInUseGB>0</dataInUseGB>
<timeStamp>0</timeStamp>
<oemId>333</ocemId>

<application>334</application>

<description></description>
<isremovable>1</isremovable>
<gracePeriodEnd>-1</gracePeriodEnd>

</license>

</licenses>
</product>
</products>

See Also

PvValidateLicenses()
PvConnectServer()
PvStart()

PvStop()

148

DTI Function Definitions

PvGetSelectionString()

Retrieves display string for a specific choice of selection type setting.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetSelectionString(

BTI LONG

BTI ULONG
BTI ULONG
BTI ULONG_PTR
BTI CHAR PTR

Arguments

hConnection,
settinglD,
selection,
pBufSize,
dispString) ;

hConnection

Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In selection Selection choice index. PSelectionList returned from PvGetAllPossibleSelections().

In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to receive the string. It
receives the actual length of selection string.

Out dispString Display string returned.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA _TYPE The requested setting is not of selection type.
P_E_BUFFER_TOO_SMALL The array size is too small. In this case, the required size is returned in pBufSize.
P_E_FAIL Failed for other reasons.
Remarks

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

149

Distributed Tuning Interface Reference

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSelectionStringSize()
PvDisconnect()

PvStop()

150

DTI Function Definitions

PvGetSelectionStringSize()
Retrieves size of buffer needed for successful PvGetSelectionString () call.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSelectionStringSize (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI_ULONG_PTR pBufSize) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In/Out pBufSize Address of an unsigned long containing size of the buffer in PvGetSelectionString() call
allocated to receive the string. It receives the actual length of selection string.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA_TYPE The requested setting is not of selection type.
P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

151

Distributed Tuning Interface Reference

PvGetSelectionValue()
Retrieves the value for a selection type setting, from the data source specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSelectionValue (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI ULONG PTR pNumltems,
BTI LONG PTR pValug,
BTI SINT whichData) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In/Out pNumltems | Address of an unsigned long that specifies the array size on input, and receives the
number of individual selection items on return.

Out pValue Array of individual selection indexes.

In whichData Flag to indicate which value is requested:

PVDATA_DEFAULT returns default value.
PVDATA_CURRENT returns current value

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA_TYPE The requested setting is not of string type.
P_E BUFFER_TOO_SMALL The array size is too small. In this case, the required size is returned in pNumltems.
P_E_FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

152

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

DTI Function Definitions

153

Distributed Tuning Interface Reference

PvGetServerName()
Retrieves the name of the connected server indicated by the connection handle.
Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetServerName (
BTI_LONG hConnection,
BTI_ULONG_PTR pBufSize,
BTI CHAR PTR serverName);
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to receive server name.

In/Out serverName | Returned server name if successful, empty string otherwise.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_BUFFER_TOO_SMALL | The buffer is too small for the string. In this case, the required buffer size is returned in
PBufSize.

P_E_FAIL Failed to connect to the named server.

Remarks
The implementation should perform the necessary initializations when called the first time.

Multiple simultaneous connections are allowed.

See Also

PvStart()
PvConnectServer()
PvDisconnect()
PvStop()

154

PvGetSettingHelp()

DTI Function Definitions

Retrieves help string related to setting.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetSettingHelp (
BTI ULONG
BTI ULONG PTR
BTI CHAR PTR

settinglD,
pBufSize,
pHelpString) ;

Arguments
In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing size of buffer allocated to receive setting value.
Receives actual size of setting value. The size should include the NULL terminator.
Out pHelpString | String value returned.

Return Values

P_OK The operation was successful.
P_E_NULL_PTR Call with NULL pointer.
P_E BUFFER_TOO_SMALL The buffer allocated is too small and the display string is truncated. In this case, the
required buffer size is returned in pBufSize.
P_E_FAIL Failed for other reasons.
Remarks

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also
PvStart()

PvConnectServer()
PvGetCategoryList()

PvGetSettingL

ist()

PvGetSettinginfo()
PvDisconnect()

PvStop()

155

Distributed Tuning Interface Reference

PvGetSettingHelpSize()
Retrieves help string related to setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSettingHelpSize (
BTI_ ULONG settingID,
BTI_ULONG_PTR pBufSize) ;
Arguments
In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing size of buffer allocated to receive setting value.
Receives actual size of setting value. The size should include the NULL terminator.

Return Values

P_OK The operation was successful.

P_E_NULL PTR Call with NULL pointer.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSettingInfo()
PvDisconnect()
PvStop()

156

PvGetSettinginfo()

DTI Function Definitions

Retrieves setting information for a setting.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetSettingInfo (
BTI LONG
BTI ULONG
PVSETTINGINFO*

Arguments

hConnection,
settinglD,
pSettingInfo) ;

hConnection

Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

settinglD

Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

Out

pSettingInfo

Address of a PVSETTINGINFO structure that receives setting information.

Return Values

Remarks

P_OK

The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

The following preconditions must be met:

= DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also
PvStart()

PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSettingHelp()
PvDisconnect()

PvStop()

157

Distributed Tuning Interface Reference

PvGetSettingList()
Retrieves a list of settings belonging to the specified category.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSettingList (
BTI_LONG hConnection,
BTI ULONG categorylD,
BTI_ULONG_PTR pNumSettings,
BTI ULONG PTR pSettingList) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In categorylD Unique identifier for the category

Out pNumSettings | Address of an unsigned long containing size of the array on input, and receives number of
items in the returned list.

Out pSettingList Pointer to the list of returned setting IDs.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E BUFFER_TOO_SMALL The array size is too small. In this case, the required size is returned in
pNumSettings.
P_E_FAIL Failed for other reasons.
Remarks

If the connection is a remote connection, only server-side settings for the category are returned. If the
connection is a local connection, both client-side and server-side settings for this category will be
returned.

Use PvlsSettingAvailable() to determine if the setting can be set at this time.
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

158

See Also

PvStart()
PvConnectServer()
PvlsSettingAvailable()
PvGetSettingHelp()
PvGetSettingInfo()
PvGetSettingMap()
PvGetSettingUnits()
PvDisconnect()
PvStop()

DTI Function Definitions

159

Distributed Tuning Interface Reference

PvGetSettingListCount()

Retrieves number of settings belonging to the specified category. This number can then be used to
allocate an array to pass to PvGetSettingList().

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSettingListCount (
BTI LONG hConnection,
BTI ULONG categorylD,
BTI ULONG PTR pNumsSettings) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In categorylD Unique identifier for the category.

Out pNumSettings | Address of an unsigned long containing size of the array on input, and receives number of
items in the returned list.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_FAIL Failed for other reasons.

Remarks

If the connection is a remote connection, only server-side settings for the category are returned. If the
connection is a local connection, both client-side and server-side settings for this category will be
returned.

Use PvlsSettingAvailable() to determine if the setting can be set at this time.

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvlsSettingAvailable()

160

PvGetSettingHelp()
PvGetSettinginfo()
PvGetSettingMap()
PvGetSettingUnits()
PvDisconnect()
PvStop()

DTI Function Definitions

161

Distributed Tuning Interface Reference

PvGetSettingMap()
Retrieves option ID and component ID for a setting.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSettingMap (
BTI_ ULONG settingID,
BTI_WORD PTR pComponentlD,
BTI_WORD PTR pOptionID) ;
Arguments
In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

Out pComponentID | Address of an unsigned short for Component.

Out pOptionID Address of an unsigned short for Option

Return Values

P_OK The operation was successful.
P_E_NULL_PTR Call with NULL pointer.
P_E_FAIL Failed for other reasons.

Remarks
Option and Component maps setting to DBUGetInfo or DBUSetInfo calls.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

162

DTI Function Definitions

PvGetSettingUnits()

Retrieves default units and suggested factor. This function is only valid for settings of long integer type.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSettingUnits(
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI_ULONG_PTR pBufSize,
BTI CHAR PTR pValue,
BTI ULONG_PTR pFactor,
BTI ULONG_ PTR pFBufSize,
BTI CHAR PTR pFValue);
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to receive string of default units.
Receives actual size of string of default units. The size should include the NULL terminator.
Out pValue String of default value returned.
Out pFactor Address of an unsigned long for factor.
In/Out pFBufSize Address of an unsigned long containing size of buffer allocated to receive string of “factor” units.
Receives actual size of string of default units. The size should include the NULL terminator.
Out pFValue String of “factor” value returned.

Return Values

P_OK

The operation was successful.

P_E_NULL PTR

Call with NULL pointer.

P_E_INVALID_DATA_TYPE The setting requested is not of long integer type.

P_E_BUFFER_TOO_SMALL | The buffer is too small for the string. In this case, the required buffer size is returned in

pBufSize.

P_E_FAIL

Failed to connect to the named server.

163

Distributed Tuning Interface Reference

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

164

DTI Function Definitions

PvGetSettingUnitsSize()
Returns the size in bytes of buffer size required to receive information in PvGetSettingUnits() call.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetSettingUnitsSize (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI_ULONG_PTR pBufSize,
BTI ULONG PTR pFBufSize);

Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In/Out pBufSize Address of an unsigned long containing size of the buffer allocated to receive string of default units.
Receives actual size of string of default units. The size should include the NULL terminator.

In/Out pFBufSize Address of an unsigned long containing size of buffer allocated to receive string of “factor” units.
Receives actual size of string of default units. The size should include the NULL terminator.

Return Values

P_OK The operation was successful.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA_TYPE The setting requested is not of long integer type.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

165

Distributed Tuning Interface Reference

PvGetSQLConnectionsData()

Retrieves the number of connections to the SQL Connection Manager and all information related to the
connections.

Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSQLConnectionsData (
BTI LONG hConnection,
BTI ULONG_ PTR pCount) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

Out pCount Address of an unsigned long to receive the number of SQL connections.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_FAIL Failed for other reasons.

Remarks

The information will be cached by DTI for subsequent calls related to SQL connections. This function
should be called first before calling any other functions to get SQL connection information.

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

The following post conditions must be met:

= The caller should call PvFreeSQLConnectionsData() to free the cached information when it is no
longer needed.

See Also

PvStart()
PvConnectServer()
PvGetMkdeCommStat()
PvGetSQLConnectioninfo()

166

DTI Function Definitions

PvFreeSQLConnectionsData()
PvDisconnect()
PvStop()

167

Distributed Tuning Interface Reference

PvGetSQLConnectioninfo()
Query the information for a SQL connection.
Header File: monitor.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetSQLConnectionInfo (
BTI_LONG hConnection,
BTI_ULONG sequence,
PVSQLCONNINFO* pSQLConnlnfo) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In sequence The sequence number (zero based) of the SQL connection. Must be within a valid range with upper
limit defined by the number of SQL connections obtained by PvGetSQLConnectionsData().

Out pSQLConninfo | Address of a PVSQLCONNINFO structure to receive the information on the SQL connection.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE hConnection parameter is not a valid connection
handle.

P_E_DATA_UNAVAILABLE Data not available for the SQL connection.

P_E_NULL_PTR pSQLConninfo pointer is NULL.

P_E_INVALID_SEQUENCE | Sequence number is not valid.

P_E_FAIL Failed to disconnect to the named server.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

» Data for SQL connections retrieved by calling PvGetSQLConnectionsData()
m Caller already has a valid SQL connection sequence.

See Also

PvStart()
PvConnectServer()

168

DTI Function Definitions

PvGetSQLConnectionsData()
PvFreeSQLConnectionsData()
PvDisconnect()

PvStop()

169

Distributed Tuning Interface Reference

PvGetStringType()

Retrieves additional information about PVSETTING_STRING setting which only applies to string type
setting.

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetStringType (
BTI LONG hConnection,
BTI ULONG settingID,
BTI ULONG PTR pTypeString) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

Out pTypeString Subtype of PVSETTING_STRING returned.

Return Values

P_OK The operation was successful.

P_E_NULL PTR Call with NULL pointer.

P_E_INVALID_DATA_TYPE The setting requested is not of string type.

P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Here are possible subtypes of PVSETTING_STRING:

» PVSTRING //a string that is neither dir or file
m PVFILESTRING /string indicates path to a file
s PVDIRECTORYSTRING //string indicates a directory

The subtypes are defined in config.h.

170

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetStringValue()
PvSetStringValue()
PvDisconnect()
PvStop()

DTI Function Definitions

171

Distributed Tuning Interface Reference

PvGetStringValue()

Retrieves the value (Null terminated string) for a string type setting, from the data source specified by
whichData. Some settings may return a list of strings separated by semicolons (;).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvGetStringValue (
BTI LONG hConnection,
BTI ULONG settingID,
BTI_ULONG_PTR pBufSize,
BTI CHAR PTR value,
BTI SINT whichData) ;

Arguments

In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In/Out pBufSize Address of an unsigned long containing the size of the buffer allocated to receive the setting value.
Receives the actual size of setting value.

Out value Address of a long integer variable that receives the setting value.

In whichData Flag to indicate which value is requested:

PVDATA_DEFAULT returns default value.
PVDATA_CURRENT returns current value

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.

P_E_INVALID_DATA_TYPE The requested setting is not of string type.

P_E_BUFFER_TOO_SMALL | Allocated buffer is too small for the string (the return string is truncated). In this case, the
required size is returned in pBufSize.

P_E_FAIL Failed for other reasons.

172

DTI Function Definitions

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetStringType()
PvSetStringValue()
PvGetStringValueSize()
PvDisconnect()
PvStop()

173

Distributed Tuning Interface Reference

PvGetStringValueSize()

Retrieves the value (Null terminated string) for a string type setting, from the data source specified by
whichData. Some settings may return a list of strings separated by semicolons (;).

Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetStringValueSize (
BTI LONG hConnection,
BTI ULONG settingID,
BTI_ULONG_PTR pBufSize,
BTI_SINT whichData) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In/Out pBufSize Address of an unsigned long containing the size of the buffer allocated to receive the
setting value. Receives the actual size of setting value.

In whichData Flag to indicate which value is requested:

PVDATA_DEFAULT returns default value.
PVDATA_CURRENT returns current value

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA_TYPE The requested setting is not of string type.
P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()

174

PvGetCategoryList()
PvGetSettingList()
PvGetStringType()
PvSetStringValue()
PvDisconnect()
PvStop()

DTI Function Definitions

175

Distributed Tuning Interface Reference

PvGetTable()
Returns table attributes for a given table.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvGetTable (
WORD dictHandle,
LPSTR tableName,
TABLEINFO* * tableProps,
COLUMNMAP * * columnList,
WORD* columnCount,
INDEXMAP* * indexList,
WORD* indexCount) ;
Arguments
In dictHandle Handle of an open dictionary returned by
PvOpenDatabase().
In tableName Name of table to retrieve.
Out tableProps Structure containing table information.
Out columnList Array of columns defined in the table.
Out columnCount Number of columns in columnList.
Out indexList Array of segments defined in the table.
Out indexCount Number of indexes in the indexList array.
Return Values
PCM_Success The operation was successful.
PCM_errFailed A general failure occurred
PCM_errMemoryAllocation Error during memory allocation
PCM_errinvalidDictionaryHandle | The specified dictionary handle does not exist.

Remarks
You must first open a dictionary successfully using PvOpenDatabase().

TableProps, indexList, and columnList arrays will need to be released using PvFreeTable.

176

See Also

PvStart()
PvOpenDatabase()
PvGetTableNames()
PvFreeTable()
PvFreeTableNames()
PvCloseDictionary()
PvStop()

DTI Function Definitions

177

Distributed Tuning Interface Reference

PvGetTableNames()
Returns table names of all the tables in the open data dictionary.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvGetTableNames (
WORD dictHandle,
TABLEMAP** tableList,
WORD* tableCount) ;
Arguments
In dictHandle Handle of an open dictionary returned by PvOpenDatabase().
Out tableList Array of TABLEMAP structures that contain table names.

Out tableCount Number of table names returned in tableList.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errinvalidDictionaryHandle | The specified dictionary handle obtained by PvOpenDatabase() is invalid.

Remarks
You must first open a dictionary successfully using PvOpenDatabase().
TableList array will need to be released using PvFreeTableNames().

You can retrieve more information about a specific table using PvGetTable().

See Also

PvStart()
PvOpenDatabase()
PvGetTable()
PvFreeTable()
PvFreeTableNames()
PvCloseDictionary()
PvStop()

178

PvGetTableStat()

DTI Function Definitions

Returns statistical information on a given table.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvGetTableStat (
BTI_WORD dbHandle,
const BTI_ CHAR* tableName,
TABLESTAT* tableStat) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In tableName Table name for which you want statistical information.

Out tableStat

TABLESTAT structure containing table statistics information.

Return Values

PCM_Success

The operation was successful.

PCM_errFailed

The operation was not successful.

PCM_errMemoryAllocation

An error occurred during memory allocation.

PCM_errinvalidDictionaryHandle | The specified dictionary handle obtained by PvOpenDatabase() is invalid.

PCM_errTableNotFound

The specified table was not found.

Remarks

You must first obtain a database handle using PvOpenDatabase().

You can retrieve more information about a specific table using PvGetTable().

See Also

PvCloseDatabase()
PvFreeTable()
PvFreeTableNames()
PvGetTable()
PvGetTableStat2()
PvOpenDatabase()
PvStart()

PvStop()

179

Distributed Tuning Interface Reference

PvGetTableStat2()

Returns statistical information on a given table including whether its data file is using compressed data
pages. See also Creating a File with Page Level Compression in PSQL Programmer's Guide and Record
and Page Compression in Advanced Operations Guide.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsqldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvGetTableStat2 (
BTI_WORD dbHandle,
const BTI CHAR* tableName,
TABLESTAT* tableStat) ;
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In tableName Table name for which you want statistical information.
Out tableStat TABLESTAT structure containing table statistics information.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errinvalidDictionaryHandle | The specified dictionary handle obtained by PvOpenDatabase() is invalid.

PCM_errTableNotFound The specified table was not found

Remarks

You must first obtain a database handle using PvOpenDatabase().

You can retrieve more information about a specific table using PvGetTable().
For more information see Differences Between TABLESTAT2 and TABLESTAT.

See Also

PvGetTableStat()
PvStart()
PvOpenDatabase()
PvOpenDatabase()

180

PvGetTable()
PvFreeTable()
PvFreeTableNames()
PvCloseDictionary()
PvCloseDatabase()
PvStop()

DTI Function Definitions

181

Distributed Tuning Interface Reference

PvGetValueLimit()
Retrieves upper and lower limits for settings of long type.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvGetValueLimit (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI LONG PTR pMaxValue,
BTI LONG PTR pMinValue) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

Out pMaxValue Address of a long integer that receives the upper limit value. If NULL is passed here, no value will
be returned.

If a negative value is returned, interpret it as follows:

/* Maximum valid memory or disk size */P_MAX_MEM_DISK_SIZE -129

/* Maximum size limited by available disk space */P_MAX_LIMITED_BY_DISK -2
/* Maximum size limited by available memory */P_MAX_LIMITED_BY_MEMORY -1

Out pMinValue Address of a long integer that receives the lower limit value. If NULL is passed here, no value will
be returned.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_INVALID_DATA_TYPE The requested setting is not of long type.
P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

182

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetLongValue()
PvSetLongValue()
PvDisconnect()
PvStop()

DTI Function Definitions

183

Distributed Tuning Interface Reference

PvisDatabaseSecured()
Determines whether a given database has security enabled.
Header File: security.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvIsDatabaseSecured(
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI LONG PTR secured) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database to check.

Out secured 1 if database is secured

0 if database is not secure

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.
P_E_ACCESS_RIGHT Insufficient access right for the operation.
P_E_FAIL Failed to open the database for other reasons.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer(), or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvSecureDatabase()
PvUnSecureDatabase()

184

DTI Function Definitions

PvCloseDatabase()
PvDisconnect()
PvStop()

185

Distributed Tuning Interface Reference

PvisSettingAvailable()
Query to see if a setting is available for configuring.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvIsSettingAvailable (
BTI_LONG hConnection,
BTI ULONG settingID) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting.

Return Values

Zero Setting is unavailable.

Non-zero Setting is available.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Setting may be unavailable due to insufficient rights to access the setting or if no such setting ID exist.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvDisconnect()
PvStop()

186

PvListDSNs()
Retrieves the list of system datasource names (DSN) of type Pervasive ODBC Engine Interface.

DTI Function Definitions

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to work with client

DSNs.

Syntax

BTI API PvListDSNs (

BTI_LONG hConnection,

BTI ULONG_ PTR pdsnListSize,

BTI CHAR PTR pdsnList,

BTI CHAR filtering) ;

Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

In/ pdsnListSize Address of an unsigned long containing the size of the buffer for the list of DSNs. Receives
Out actual size of the returned DSN list.

Out pdsnList

Contains the list of DSNs if successful.

In filtering

Set to 1 if you only want system PSQL Engine DSNs. Set to 0 if you want all DSNs.

Return Values

P_OK

The operation was successful.

P_E_INVALID_HANDLE

Invalid connection handle.

P_E_NULL_PTR

Call with NULL pointer.

P_E_BUFFER_TOO_SMALL

The buffer is too small for the string. In this case, the required buffer size is returned in
pdsnListSize.

P_E FAIL

Failed for other reasons.

Remarks

The following precondition must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

To retrieve the list of DSNs without having to prompt the user to login, pass empty strings for username
and password when establishing the server connection with PvConnectServer().

187

Distributed Tuning Interface Reference

Note The connection established by passing empty strings for username and password is an insecure
connection, and will not have sufficient rights to perform most of the other operations in DTI.

Example
BTI WORD res = 0;
BTI ULONG dsncount = 0;
BTI ULONG dsnListSize = 0;
BTI CHAR * dsnList;

// MAX DSN NAME LENGTH is defined to be 32
// in catalog.h
res = PvCountDSNs (hConnection,
&dsnCount,
1);
dsnlistSize = dsnCount * (MAX DSN NAME LENGTH+1) ;
dsnList = new char[dsnlListSize];

res = PvListDSNs (hConnection,

&dsnListSize,
dsnList,
1);

See Also

PvStart()

PvConnectServer()

PvCountDSNs()

PvGetDSN()

PvDisconnect()

PvStop()

188

DTI Function Definitions

PvModifyDatabase()

Modify an existing database using the specified information for the new database name, dictionary and
data paths and the database flag.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvModifyDatabase (

BTI LONG
BTI CHAR PTR

hConnection,
dbNameExisting,

BTI_CHAR PTR dbNameNew,
BTI CHAR PTR dictPath,
BTI CHAR PTR dataPath,
BTI ULONG dbFlags) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.
In dbNameExisting | Name of the existing database
In dbNameNew Name of the new database. Set this parameter to NULL if you want the database name to remain
unchanged.
In dictPath Dictionary path.
In dataPath Data path. Set this value to NULL to use the default data path (that is, the same as the dictionary
path)
If you want to modify a database to include MicroKernel Engine data files located in multiple paths,
specify this parameter as a semicolon (;) delimited list. For example:
C:\data\pathl;C:\data\path2
In dbFlags Database flags, which can be a combination of the P_DBFLAG__ constants.

P_DBFLAG_RI (enforce integrity constraints, including referential integrity and triggers)

P_DBFLAG_BOUND (stamps the database name on the dictionary files so only that database can
use them)

P_DBFLAG_DBSEC_AUTHENTICATION (use database security authentication, Mixed security
policy. See Btrieve Security Policy.)

P_DBFLAG_DBSEC_AUTHORIZATION (use database security authorization, Database security
policy. See Btrieve Security Policy.)

P_DBFLAG_LONGMETADATA (use V2 metadata. See Metadata Version.)

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

189

Distributed Tuning Interface Reference

P_E_NULL_PTR Call with NULL pointer

P_E_ACCESS_RIGHT Insufficient access right for the operation

P_E NOT_EXIST Named database does not exist on the server.

Failed for other reasons.

P_E FAIL

Remarks
The following precondition must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer(), or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Btrieve Security Policy

The following table indicates how to specify a security model in a new database, or to interpret the
security model of an existing database. Using any other combination of flags for security will result in
status code 7024.

This Flag Combination

Represents this Security Model

No flags Classic
P_DBFLAG_DBSEC_AUTHENTICATION Mixed
P_DBFLAG_DBSEC_AUTHENTICATION Database

P_DBFLAG_DBSEC_AUTHORIZATION

See Also

PvStart()
PvConnectServer()
PvCreateDatabase()
PvGetDbNamesData()
PvGetDbName()
PvGetDbFlags()
PvGetDbDataPath()
PvGetDbDictionaryPath()
PvGetDbServerName()
PvFreeDbNamesData()
PvDisconnect()
PvStop()

190

DTI Function Definitions

PvModifyDatabase2()

Modify an existing database using the specified information for the new database name, dictionary and
data paths, database flag, and code page. This function is the same as PvModifyDatabase() except that
the database code page is also specified.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsqldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvModifyDatabase2 (
BTI_LONG hConnection,
BTI CHAR PTIR dbNameExisting,
BTI CHAR PTR dbNameNew,
BTI CHAR PTR dictPath,
BTI CHAR PTR dataPath,
BTI ULONG dbFlags,
BTI LONG dbCodePage) ;

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbNameExisting | Name of the existing database

In dbNameNew Name of the new database. Set this parameter to NULL if you want the database name to remain
unchanged.

In dictPath Dictionary path.

In dataPath Data path. Set this value to NULL to use the default data path (that is, the same as the dictionary
path)

If you want to modify a database to include MicroKernel Engine data files located in multiple paths,
specify this parameter as a semicolon (;) delimited list. For example:
C:\data\pathl;C:\data\path2

191

Distributed Tuning Interface Reference

In dbFlags

Database flags, which can be a combination of the P_DBFLAG__ constants.
P_DBFLAG_RI (enforce integrity constraints, including referential integrity and triggers)

P_DBFLAG_BOUND (stamps the database name on the dictionary files so only that database can
use them)

P_DBFLAG_DBSEC_AUTHENTICATION (use database security authentication, Mixed security
policy. See Btrieve Security Policy.)

P_DBFLAG_DBSEC_AUTHORIZATION (use database security authorization, Database security
policy. See Btrieve Security Policy.)

P_DBFLAG_LONGMETADATA (use V2 metadata. See Metadata Version.)

In dbCodePage

For databases on Windows platforms, a number indicating the code page for database data and
metadata strings.

For databases on Linux and OS X distributions, one of the following to indicate the code page for
database data and metadata strings:

+ P_DBCODEPAGE_UTF8
+ P_DBCODEPAGE_EUCJP
+ P_DBCODEPAGE_IS08859_1

For databases on Windows, Linux, and OS X, the value can also be a zero or
P_DBCODEPAGE_NA.

A zero indicates legacy behavior. That is, no code page is specified, which uses the operating
system (OS) encoding on the server machine. See also Database Code Page in PSQL User's
Guide.)

P_DBCODEPAGE_NA specifies to leave the code page as is (the database code page is not to be
changed).

Note: The database engine does not validate the encoding of the data and metadata that an
application inserts into a database. The engine assumes that all data was entered using the
encoding of the server or the client as explained in Database Code Page and Client Encoding in
Advanced Operations Guide.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer
P_E_ACCESS_RIGHT Insufficient access right for the operation
P_E_NOT_EXIST Named database does not exist on the server.
P_E_FAIL Failed for other reasons.

Remarks
The following precondition must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer(), or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

192

Btrieve Security Policy

See Btrieve Security Policy.

See Also
PvConnectServer()
PvCreateDatabase2()
PvCreateDSN2()
PvDisconnect()
PvFreeDbNamesData()
PvGetDbCodePage()
PvGetDbDataPath()
PvGetDbDictionaryPath()
PvGetDbFlags()
PvGetDbName()
PvGetDbNamesData()
PvGetDbServerName()
PvGetDSNEX2()
PvModifyDSN2()
PvStart()

PvStop()

DTI Function Definitions

193

Distributed Tuning Interface Reference

PvModifyDSN()
Modifies an existing data source name.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav78.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to work with client
DSNS.

Syntax

BTI API PvModifyDSN(
BTI_LONG hConnection,
BTI _CHAR PTR pdsnName,
BTI_CHAR PTR pdsnDesc,
BTI CHAR PTR pdsnDBQ,

BTI LONG openMode) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In pdsnName Name of the DSN to modify.

In pdsnDesc New description for the DSN.

In pdsnDBQ New Database name for the DSN.

In openMode New Open mode for the DSN, which is one of the following:

NORMAL_MODE
ACCELERATED_MODE,
READONLY_MODE

EXCLUSIVE_MODE

See also DSN Open Mode in ODBC Guide.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.

P_E _DSN_DOES_NOT_EXIST The specified DSN name does not exist.
P_E_ACCESS_RIGHT Insufficient access right for the operation.
P_E_INVALID_OPEN_MODE The specified open mode is invalid.
P_E_FAIL Failed to retrieve data path.

194

DTI Function Definitions

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also

PvStart()
PvConnectServer()
PvListDSNs()
PvCreateDSN()
PvGetDSN()
PvGetDSNEX()
PvDeleteDSN()
PvCountDSNs()
PvStop()

195

Distributed Tuning Interface Reference

PvModifyDSN2()

Modifies an existing data source name. This function is the same as PvModifyDSN() except that the
encoding option for data is also specified.

Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

This function is deprecated in PSQL v11 and higher versions. Use the ODBC API to work with client
DSNs.

Syntax

BTI_API PvModifyDSN(
BTI LONG hConnection,
BTI _CHAR PTR pdsnName,
BTI CHAR PTR pdsnDesc,
BTI _CHAR PTR pdsnDBQ,

BTI LONG openMode,
BTI LONG translate) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In pdsnName Name of the DSN to modify.

In pdsnDesc New description for the DSN.

In pdsnDBQ New Database name for the DSN.

In openMode Open mode for the DSN, which is one of the following:

+ NORMAL_MODE

* ACCELERATED_MODE
» READONLY_MODE

+ EXCLUSIVE_MODE

See also DSN Open Mode in ODBC Guide.

In translate Encoding option for data, which can be one of the following:
+ DSNFLAG_DEFAULT

+ DSNFLAG_OEMANSI

+ DSNFLAG_AUTO

See also Encoding Translation in ODBC Guide. Note that DSNFLAG_DEFAULT corresponds
to the “None” encoding option in ODBC Administrator.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

196

DTI Function Definitions

P_E_NULL_PTR Call with NULL pointer.

P_E _DSN_DOES_NOT_EXIST The specified DSN name does not exist.
P_E_ACCESS_RIGHT Insufficient access right for the operation.
P_E_INVALID_OPEN_MODE The specified open mode is invalid.

P_E_INVALID_TRANSLATE_OPTION The specified encoding translation option is invalid.

P_E_FAIL Failed to retrieve data path.

Remarks
The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

See Also
PvConnectServer()
PvCountDSNs()
PvCreateDatabase2()
PvCreateDSN2()
PvDeleteDSN()
PvGetDSN()
PvGetDSNEX2()
PvListDSNs()
PvStart()

PvStop()

197

Distributed Tuning Interface Reference

PvOpenDatabase()
Opens a database by name and returns a handle that can be used to manipulate the database catalog.
Header File: catalog.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvOpenDatabase (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI CHAR PTR dbUser,
BTI CHAR PTR dbPassword,
BTI WORD PTR dbHandle) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database.

In dbUser Database user name if security is defined.
In dbPassword Database password if security is defined.
Out dbHandle Returned handle to the database.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_ACCESS_RIGHT Insufficient access right for the operation.

P_E_FAIL Failed to open the database for other reasons.

PCM_errSessionSecurityError Invalid user name or password.
Remarks

The following preconditions must be met:

m DTl session started by calling PvStart()

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m If the database has security enabled, you must specify a valid database user name and password.
Security for the returned database handle is enforced based on the access rights defined for the
database, and should match behavior seen in SQL or ODBC access methods.

198

See Also

PvStart()
PvConnectServer()
PvGetDbFlags()
PvModifyDatabase()
PvCloseDatabase()
PvDropDatabase()
PvDisconnect()
PvStop()

DTI Function Definitions

199

Distributed Tuning Interface Reference

PvOpenDictionary()

Opens an existing dictionary. Given an absolute path of the dictionary or data source names, it returns
a dictionary handle that will be used for any subsequent calls to any functions.

Note This function is deprecated in PSQL 9 and higher versions. See PvOpenDatabase() to replace
this function in your application.

Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav75.dll (Windows), libpsgldti.so (Linux), libpsqldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT PvOpenDictionary(
LPTSTR path,
WORD* dictHandle,
LPSTR user,
LPSTR password) ;
Arguments
In path Fully-qualified path to the dictionary files.
Out dictHandle Handle to be used in subsequent calls
In user User name needed to open the dictionary. This argument can be set to NULL.
In password Used in conjunction with user name to open the dictionary files. Can also be NULL.

Return Values

PCM_Success The operation was successful.
PCM_errFailed The operation was not successful.
PCM_errMemoryAllocation An error occurred during memory allocation.

PCM_errDictionaryPathNotFound | The specified dictionary path is invalid.

PCM_errDictionaryAlreadyOpen The specified dictionary files are currently open.

PCM_SessionSecurityError Either the user name or password is invalid.

Remarks
This function should be called first when accessing DDFs via DTI.
Multiple dictionaries can be open at one time.

Use PvCloseDictionary() to free the resources.

200

See Also

PvStart()
PvCreateDictionary()
PvCreateDatabase()
PvCloseDictionary()
PvStop()

DTI Function Definitions

201

Distributed Tuning Interface Reference

PvRemoveUserFromGroup()
Remove an existing user from an existing group.
Header File: ddf.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
PRESULT DDFAPICALLTYPE PvRemoveUserFromGroup (
BTI_WORD dbHandle,
const BTI_CHAR* user) ;
const BTI CHAR* group,
Arguments
In dbHandle Handle of an open database returned by PvOpenDatabase().
In user Database user name.
In group Database group name.

Return Values

PCM_Success The operation was successful.

PCM_errFailed The operation was not successful.
PCM_errinvalidAccountName The specified account or user name does not exist.
PCM_errUserNotPartOfGroup The specified user is not a member of the group.

PCM_errDatabaseHasNoSecurity | Database has no security.

PCM_errSessionSecurityError Database opened with insufficient privilege.

Remarks
The following preconditions must be met:

= You must first open a database successfully using PvOpenDatabase() as user ‘Master'.
m The associated database has database-level security enabled.

= The specified group and user names must already exist in the database.

m The specified user is a member of the specified group.

The following post condition must be met:

= Use PvCloseDatabase() to free the resources.

202

See Also

PvCreateGroup()
PvCreateUser()
PvAlterUserName()
PvAddUserToGroup()
PvDropGroup()
PvDropUser()
PvOpenDatabase()
PvCloseDatabase()

DTI Function Definitions

203

Distributed Tuning Interface Reference

PvSecureDatabase()
Enables database security for an existing database.
Header File: security.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvSecureDatabase (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI CHAR PTR dbUser,
BTI CHAR PTR dbPassword) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database.
In dbUser Database user name - must be Master to set security.
In dbPassword Database password to use for Master user.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_ACCESS_RIGHT Insufficient access right for the operation.

P_E_FAIL Failed to open the database for other reasons.

PCM_errSessionSecurityError Invalid user name or password.
Remarks

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= When you enable database security, you must specify Master as the database user name and choose
a password. Security for the database is enforced based on the access rights defined for the database,
and should match behavior seen in SQL or ODBC access methods.

204

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvUnSecureDatabase()
PvisDatabaseSecured()
PvCloseDatabase()
PvDisconnect()
PvStop()

DTI Function Definitions

205

Distributed Tuning Interface Reference

PvSetBooleanValue()
Save new value for a Boolean type setting, to the data target specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvSetBooleanValue (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI SINT newValue,
BTI SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
In newValue Integer value to be set.
In whichData Flag to indicate which value is to be set:

PVDATA_CURRENT means apply setting changes to current session and save to registry, ini or
ncf file. Only valid for Trace Op in Btr 6.15 NT release.

PVDATA_PERSISTENT don'’t apply setting change to the current session. Save setting to
registry, ini or ncf files only.

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_INVALID_DATA_TYPE The setting is not of Boolean type.
P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= You must logon with administrator-level rights with PvConnectServer () before you can set a new
value for a Boolean type setting.

Note This function cannot be called by a user logged-in with the "restricted" user type.

206

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetBooleanValue()
PvGetBooleanStrings()
PvlsSettingAvailable()
PvDisconnect()
PvStop()

DTI Function Definitions

207

Distributed Tuning Interface Reference

PvSetLongValue()
Save new value for a long integer type setting, to the data target specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvSetLongValue (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI LONG newValue,
BTI SINT whichData) ;
Arguments
In hConnection | Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().

In newValue Integer value to be set.

Before calling this function, check to see that the value is within the limits for the particular
setting by using the PvGetValueLimit() function.

In whichData Flag to indicate which value is to be set:

PVDATA_CURRENT sets current value.
PVDATA_PERSISTENT sets persistent value

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_INVALID_DATA_TYPE The setting is not of long type.

P_E_OUT_OF_RANGE The value specified to be set is out of range.

P_E_FAIL Failed for other reasons.

Remarks
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= You must logon with administrator-level rights with PvConnectServer () before you can set a new
value for a Long type setting.

208

DTI Function Definitions

Note This function cannot be called by a user logged-in with the "restricted" user type.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetLongValue()
PvGetValueLimit()
PvlsSettingAvailable()
PvDisconnect()
PvStop()

209

Distributed Tuning Interface Reference

PvSetSelectionValue()
Save new value for a selection type setting, to the data target specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvSetSelectionValue (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI_ ULONG numlitems,
BTI LONG PTR pNewValug,
BTI SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settinglD Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
In numltems Number of individual selection items to be set.

In pNewValue Array of individual selection items to be set.

In whichData Flag to indicate which value is to be set:

PVDATA_CURRENT sets current value.
PVDATA_PERSISTENT sets persistent value

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA_TYPE The setting is not of selection type.
P_E_INVALID_SELECTION At least one selection item is invalid.
P_E_FAIL Failed for other reasons.

Remarks

This function is used to work with both single-selection and multi-selection data types. If more than one
selection items are set for a single-selection item, the first value is used.

The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

210

DTI Function Definitions

= You must logon with administrator-level rights with PvConnectServer () before you can set a new

value for a Selection type setting.

Note This function cannot be called by a user logged-in with the "restricted" user type.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetSelectionValue()
PvGetSelectionString()
PvGetAllPossibleSelections()
PvCountSelectionltems()
PvlsSettingAvailable()
PvDisconnect()

PvStop()

211

Distributed Tuning Interface Reference

PvSetStringValue()
Save new value for a string type setting, to the data target specified by whichData.
Header File: config.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI SINT PvSetStringValue (
BTI_LONG hConnection,
BTI ULONG settinglD,
BTI CHAR PTR newValue,
BTI SINT whichData) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In settingID Unique identifier for the setting. A list of settings can be obtained from PvGetSettingList().
In newValue String value to be set.
In whichData Flag to indicate which value is to be set:

PVDATA_CURRENT sets current value.
PVDATA_PERSISTENT sets persistent value

Return Values

P_OK The operation was successful.
P_E_INVALID_HANDLE Invalid connection handle.
P_E_NULL_PTR Call with NULL pointer.
P_E_INVALID_DATA_TYPE The setting is not of string type.
P_E_FAIL Failed for other reasons.

Remarks
Some settings may take multiple strings separated by semicolons (;).
The following preconditions must be met:

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

= You must logon with administrator-level rights with PvConnectServer() before you can set a new
value for a String type setting.

212

DTI Function Definitions

Note This function cannot be called by a user logged-in with the "restricted" user type.

See Also

PvStart()
PvConnectServer()
PvGetCategoryList()
PvGetSettingList()
PvGetStringType()
PvGetStringValue()
PvlsSettingAvailable()
PvDisconnect()
PvStop()

213

Distributed Tuning Interface Reference

PvStart()

Start a Distributed Tuning Interface (DTI) session. This function must be called before any DTI calls are
made.

Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvStart (BTI_LONG reserved) ;

Arguments

In reserved Reserved for future use.

Return Values

P_OK The operation was successful.

P_E_FAIL A general failure occurred.

Remarks
This function performs initialization and binds resources for DTI.
Example

BTI SINT status = 0;

status = PvStart (0);

// invoke multiple DTI calls
status = PvStop (0);

See Also
PvStop()

214

DTI Function Definitions

PvStop()
Closes a DTI session and frees the related resources.
Header File: connect.h (See also Header Files)

Function First Available In Library: w3dbav75.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI SINT PvStop (BTI_LONG PTR preserved) ;

Arguments
In preserved Reserved for future use.
Return Values
P_OK The operation was successful.
P_E_FAIL A general failure occurred.

Remarks

This function frees resources of DTI and closes the DTI session. This function should be called before
your application exits.

Example
BTI LONG status = 0;
status = PvStop (0);

See Also
PvStart()

215

Distributed Tuning Interface Reference

PvUnSecureDatabase()
Disables database security on a database.
Header File: security.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax
BTI API PvUnSecureDatabase (
BTI_LONG hConnection,
BTI CHAR PTR dbName,
BTI CHAR PTR dbUser,
BTI CHAR PTR dbPassword) ;
Arguments
In hConnection Connection handle that identifies the server. Connection handles are obtained with the

PvConnectServer() function.

In dbName Name of the database.
In dbUser Database user name - must be Master to enable or disable security.
In dbPassword Database password for Master user.

Return Values

P_OK The operation was successful.

P_E_INVALID_HANDLE Invalid connection handle.

P_E_NULL_PTR Call with NULL pointer.

P_E_ACCESS_RIGHT Insufficient access right for the operation.

P_E_FAIL Failed to open the database for other reasons.

PCM_errSessionSecurityError Invalid user name or password.
Remarks

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

m Database is secured.

216

See Also

PvStart()
PvConnectServer()
PvOpenDatabase()
PvSecureDatabase()
PvisDatabaseSecured()
PvCloseDatabase()
PvDisconnect()
PvStop()

DTI Function Definitions

217

Distributed Tuning Interface Reference

PvValidateLicenses()
Initiates a check of the validity of all keys on the computer indicated by the connection.
Header File: dtilicense.h (See also Header Files)

Function First Available In Library: w3dbav90.dIl (Windows), libpsgldti.so (Linux), libpsgldti.dylib
(OS X) (See also Link Libraries)

Syntax

BTI API PvValidateLicenses (BTI_LONG hConnection);

Arguments

In hConnection Connection handle that identifies the server. Connection handles are obtained with the
PvConnectServer() function.

Return Values

P_OK The validation operation completed successfully.

P_E_FAIL The validation operation did not complete successfully.

Status code pertaining to license See Status Codes and Messages for License Administrator Status Codes and
administration or to authorization Authorization Status Codes.

Remarks

PvValidateLicenses returns only the result from requesting a validation check. It does not return any
information about the state of the keys. You must separately call PvGetProductsinfo() to get the XML
string of product information that includes information about the state of the keys.

The following preconditions must be met:

m DTl session started by calling PvStart().

= Connection established by PvConnectServer() or if you are performing the operation on a local
machine, P_LOCAL_DB_CONNECTION may be used as the connection handle.

Example

status = PvValidateLicenses (P _LOCAL DB CONNECTION) ;

See Also
PvGetProductsinfo()
PvStart()

PvStop()

218

	About This Manual
	Distributed Tuning Interface Guide
	Overview of Distributed Tuning Interface
	String Arguments Encoding
	API Categories
	Execution Privileges

	Basics Of Using DTI
	Header Files
	Link Libraries
	Before Calling Any Functions

	Sample Programs For DTI
	Common Tasks With DTI
	Making a Connection to a Server Using DTI
	Obtaining a Setting ID Using DTI
	Passing a DTI Structure as a Parameter

	Distributed Tuning Interface Reference
	Using the DTI Function Reference
	DTI Functional Groups
	DTI Error Messages
	DTI Structures
	CONFIG.H Structures
	DDFSTRCT.H Structures
	MONITOR.H Structures

	DTI Calling Sequence
	DTI Function Definitions
	PvAddIndex()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAddLicense()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvAddTable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAddUserToGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAlterUserName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvAlterUserPassword()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCheckDbInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvCloseDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCloseDictionary()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvConnectServer()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvCopyDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvCountDSNs()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCountSelectionItems()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvCreateDatabase2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateDictionary()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateDSN2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvCreateUser()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDeleteDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDeleteLicense()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvDisconnect()
	Syntax
	Arguments
	Return Values
	Example
	See Also

	PvDisconnectMkdeClient()
	Syntax
	Arguments
	Return Values
	Example
	Remarks
	See Also

	PvDisconnectSQLConnection()
	Syntax
	Arguments
	Return Values
	Example
	Remarks
	See Also

	PvDropDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropIndex()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropIndexByName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropTable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvDropUser()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeDbNamesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeMkdeClientsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeOpenFilesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeSQLConnectionsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvFreeTable()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvFreeTableNames()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvGetAllPossibleSelections()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetBooleanStrings()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetBooleanValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetCategoryInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetCategoryList()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetCategoryListCount()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbCodePage()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbDataPath()
	Syntax
	Arguments
	Return Values
	See Also

	PvGetDbDictionaryPath()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbFlags()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbName()
	Syntax
	Arguments
	Return Values
	Example
	Remarks
	See Also

	PvGetDbNamesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDbServerName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDSNEx()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetDSNEx2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetEngineInformation()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetError()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetFileHandlesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetFileHandleInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetFileInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetLongValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientId()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientHandlesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientHandleInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeClientsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeCommStat()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeCommStatEx()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeUsage()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeUsageEx()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetMkdeVersion()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetOpenFilesData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetOpenFileName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetProductsInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvGetSelectionString()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSelectionStringSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSelectionValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetServerName()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingHelp()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingHelpSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingList()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingListCount()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingMap()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingUnits()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSettingUnitsSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSQLConnectionsData()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetSQLConnectionInfo()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetStringType()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetStringValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetStringValueSize()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTableNames()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTableStat()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetTableStat2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvGetValueLimit()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvIsDatabaseSecured()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvIsSettingAvailable()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvListDSNs()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvModifyDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvModifyDatabase2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvModifyDSN()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvModifyDSN2()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvOpenDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvOpenDictionary()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvRemoveUserFromGroup()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSecureDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetBooleanValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetLongValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetSelectionValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvSetStringValue()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvStart()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvStop()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

	PvUnSecureDatabase()
	Syntax
	Arguments
	Return Values
	Remarks
	See Also

	PvValidateLicenses()
	Syntax
	Arguments
	Return Values
	Remarks
	Example
	See Also

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

